Measuring Blast-Related Intracranial Pressure Within the Human Head

Author(s):  
Cynthia Bir
1994 ◽  
Vol 11 (3) ◽  
pp. 317-324 ◽  
Author(s):  
MARK J. KOTAPKA ◽  
DAVID I. GRAHAM ◽  
J. HUME ADAMS ◽  
THOMAS A. GENNARELLI

2019 ◽  
Vol 22 ◽  
pp. S78-S84 ◽  
Author(s):  
Nicola Petrone ◽  
Gianluca Candiotto ◽  
Edoardo Marzella ◽  
Federico Uriati ◽  
Giovanni Carraro ◽  
...  

Author(s):  
Tanu Khanuja ◽  
Harikrishnan Narayanan Unni

Traumatic brain injuries are life-threatening injuries that can lead to long-term incapacitation and death. Over the years, numerous finite element human head models have been developed to understand the injury mechanisms of traumatic brain injuries. Many of these models are erroneous and used ellipsoidal or spherical geometries to represent brain. This work is focused on the development of high-quality, comprehensive three-dimensional finite element human head model with accurate representation of cerebral sulci and gyri structures in order to study traumatic brain injury mechanisms. Present geometry, predicated on magnetic resonance imaging data consist of three rudimentary components, that is, skull, cerebrospinal fluid with the ventricular system, and the soft tissues comprising the cerebrum, cerebellum, and brain stem. The brain is modeled as a hyperviscoelastic material. Meshed model with 10 nodes modified tetrahedral type element (C3D10M) is validated against two cadaver-based impact experiments by comparing the intracranial pressures at different locations of the head. Our results indicate a better agreement with cadaver results, specifically for the case of frontal and parietal intracranial pressure values. Existing literature focuses mostly on intracranial pressure validation, while the effects of von Mises stress on brain injury are not analyzed in detail. In this work, a detailed interpretation of neurological damage resulting from impact injury is performed by analyzing von Mises stress and intracranial pressure distribution across numerous segments of the brain. A reasonably good correlation with experimental data signifies the robustness of the model for predicting injury mechanisms based on clinical predictions of injury tolerance criteria.


Author(s):  
H S Park ◽  
Y S Yoon

A finite element model of the human head by linear biphasic theory is developed to study the dynamic response of the human head to impact. Intracranial tissues are modelled as a binary mixture, i.e. the fluid and solid phases. To validate the biphasic finite element formulation, the result of the numerical analysis of a one-dimensional wave propagation problem is compared with that of analytic solution. The permeabilities of the subarachnoid space and brain which may reproduce the same coup and contre-coup CSF (cerebral spinal fluid) pressures from the monophasic model are searched in the specified range of skull permeability. Then the intracranial pressure distributions from the biphasic model for the frontal impact are compared with those from the monophasic model. In general, the biphasic model produces a more injurious intracranial pressure distribution than the monophasic model. The pressure distribution from the biphasic model shows a little higher contre-coup pressure in the frontal lobe than in the occipital region. This finding is in agreement with those clinical findings that contre-coup injuries are more frequently found in the frontal lobe. Another numerical simulation is conducted to characterize the effect of the volume ratios between two phases in the skull and subarachnoid space. From the results, it can be seen that the variation of the volume ratio in the subarachnoid space affects the intracranial pressure distribution of the lateral part while the variation in the skull does not.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
M. Waqas A. Khan ◽  
Elham Moradi ◽  
Lauri Sydänheimo ◽  
Toni Björninen ◽  
Yahya Rahmat-Samii ◽  
...  

Minimally invasive approach to intracranial pressure monitoring is desired for long-term diagnostics. The monitored pressure is transmitted outside the skull through an implant antenna. We present a new miniature (6 mm × 5 mm) coplanar implant antenna and its integration on a sensor platform to establish a far-field data link for the sensor readout at distances of 0.5 to 1 meter. The implant antenna was developed using full-wave electromagnetic simulator and measured in a liquid phantom mimicking the dielectric properties of the human head. It achieved impedance reflection coefficient better than −10 dB from 2.38 GHz to 2.54 GHz which covers the targeted industrial, scientific, and medical band. Experiments resulted in an acceptable peak gain of approximately −23 dBi. The implant antenna was submerged in the liquid phantom and interfaced to a 0.5 mW voltage controlled oscillator. To verify the implant antenna performance as a part of the ICP monitoring system, we recorded the radiated signal strength using a spectrum analyzer. Using a half-wavelength dipole as the receiving antenna, we captured approximately −58.7 dBm signal at a distance of 1 m from the implant antenna which is well above for the reader with sensitivity of −80 dBm.


Author(s):  
Veera Selvan ◽  
Namas Chandra

The mechanics of blast wave-head interaction determines the magnitude of mechanical insult to the human head during a field explosion and subsequent brain injury. In this work, blast overpressure and shell thickness are related to fluid pressure based on experimental and computational methods. A fluid-filled cylinder is idealized as a two-dimensional analog of a skull-brain complex and is subjected to a Friedlander blast wave. Strain and pressure on the surface of the cylinder and pressure in the fluid (analogue of Intracranial pressure) are experimentally measured and compared with numerical simulation results. The validated numerical model shows that fluid pressure increases linearly with increase in reflected overpressures (ROP) for a given shell thickness. When the ROP is kept constant, fluid pressure increases linearly with the decrease in shell thickness. An equation is developed for predicting the fluid pressure for a given ROP and shell thickness.


Author(s):  
Asghar Rezaei ◽  
Hesam Sarvghad-Moghaddam ◽  
Ashkan Eslaminejad ◽  
Mariusz Ziejewski ◽  
Ghodrat Karami

Skull deformation and vibration has been hypothesized to be an injury mechanism when the human head undergoes an impact scenario. The extent that skull deformation may increase the risk of traumatic brain injury, however, is not well understood. This computational study explains whether skull deformation has any impact on the variation of intracranial pressure (ICP). To this end, a finite element head model including major anatomical components of the human head was employed. The head model has been validated against ICP variations on the brain. The impact simulations were carried out using a rigid cylindrical impactor. The scenarios were frontal impacts with the impactor hitting the forehead of the head model at two impact severity levels. In order to examine the effect of skull elasticity on the stress wave propagation inside the cranium under an external applied force, the skull was also taken as a rigid body with the same density as the elastic one, and the result were compared with those obtained with the deformable skull. For the two cases, the variation of ICPs at the coup and countercoup sites were recorded and compared. The results of the study showed that, for the case studies presented here, the deformation of skull didn’t increase the level of ICP inside the brain. It was concluded that the skull rapid body motion might be responsible for brain injuries.


Author(s):  
Shailesh Ganpule ◽  
Linxia Gu ◽  
Guoxin Cao ◽  
Namas Chandra

When a pressure wave of finite amplitude is generated in air by a rapid release of energy, such as high-pressure gas storage vessel or the blast from dynamite, there may be undetected brain injuries even though protective armors prevent the penetration of the projectile. To study brain tissue injury and design a better personnel head armor under blast wave, computational models of human head have been developed. Models with and without helmet are built to quantify the intracranial pressure and shear stresses of head subjected to blast wave. All the models are compared against injury thresholds for intracranial pressure and shear stresses. Overall pressure and shear stress level is highest in model without helmet and lowest in model with helmet having foam layer on inner side of helmet. The results show that helmet reduces the pressure and shear stresses generated in the brain. However this reduction in pressure and shear stresses might not be sufficient to mitigate early time, blast induced, traumatic brain injury. The validated results will provide better understanding of the energy transfer characteristics of blast wave through helmet and the injury mechanism of human head.


Sign in / Sign up

Export Citation Format

Share Document