Ship-Based UAV Measurements of Air-Sea Interaction in Marine Atmospheric Boundary Layer Processes in the Equatorial Indian Ocean

2013 ◽  
Author(s):  
W. K. Melville
2021 ◽  
Author(s):  
Neha Salim ◽  
Harilal B Menon ◽  
Nadimpally V P Kiran Kumar

<p>The study deals with the thermodynamic characterization of marine atmospheric boundary layer (MABL) prevailing over regions of Indian Ocean and Indian Ocean sector of Southern Ocean from 29 high-resolution radiosondes launched during the International Indian Ocean Expedition (IIOE-2) and Southern Ocean Expedition (SOE-9). IIOE-2 was conducted during December 2015 onboard ORV Sagar Nidhi during which 11 radiosondes were launched, whereas SOE-9 was conducted during January-March 2017 onboard MV SA Agulhas which had 18 radiosonde ascents. These observations spanned latitudes from ~15<sup>o</sup>N to 70<sup>o</sup>S having crossed three major atmospheric circulation cells: Hadley cell, Ferrell cell and Polar cell. In addition, crucial atmospheric mesoscale phenomena such as inter-tropical convergence zone (ITCZ), sub-tropical jet (STJ) and polar jet (PJ) were encountered along with several oceanic fronts. Analysis of thermodynamic structure of MABL showed large variability in the formation of atmospheric sub-layers such as surface layer, mixed layer, cloud layer and trade wind inversion layer within MABL. MABL height varied spatially from tropics and mid-latitudes (12<sup>o</sup>N to 50<sup>o</sup>S) to polar latitudes (60<sup>o</sup>S to 68<sup>o</sup>S). Deep mixed layer were found over the tropics and mid-latitudes (~700 m) while shallow mixed layer was observed over the polar latitudes (~200 m). Deep mixed layer over the tropics were attributed to intense convective mixing while shallow mixed layer over polar regions was attributed to limited convective overturning associated with negative radiation balance at the surface. Convection was negligible over mid-latitudes (43<sup>o</sup>S to 55<sup>o</sup>S) where most of the atmospheric mixing were forced by frontal systems where lifting of air mass was mechanically driven by high speed winds rather than by convection. The enhanced convection over the tropics was confirmed from higher values of convective available potential energy (CAPE > 1000 J/kg) and large negative values of convective inhibition energy (CINE < -50 J/kg). Over the mid-latitude region (43<sup>o</sup>S to 50<sup>o</sup>S), enhanced advection and detrainment of convection was evident with maximum values of BRN shear (~65 knots) and lowest CAPE (~4 J/kg). Over polar latitudes (~60<sup>o</sup>S to 68<sup>o</sup>S), minimum CAPE (~17 J/kg) and low BRN shear (~5 knots) was noticed, which indicated presence of stable boundary layer conditions. A mesoscale phenomenon (i.e., ITCZ) was witnessed at ~5.92<sup>o</sup>S with highest CAPE ~2535.17 J/kg which signifies large convective instability resulting in strong convective updraft aiding thunderstorm activity and moderate precipitation over ITCZ. Analysis of conserved variables (CVA) revealed formation of second mixed layer (SML) structure between 12<sup>o</sup>N and 40<sup>o</sup>S. However, south of 40<sup>o</sup>S this structure ceases. The characteristics of SML structure and the plausible causes for its existence are also investigated.  </p>


1998 ◽  
Vol 37 (3) ◽  
pp. 308-324 ◽  
Author(s):  
Stephen P. Palm ◽  
Denise Hagan ◽  
Geary Schwemmer ◽  
S. H. Melfi

Abstract A new technique for retrieving near-surface moisture and profiles of mixing ratio and potential temperature through the depth of the marine atmospheric boundary layer (MABL) using airborne lidar and multichannel infrared radiometer data is presented. Data gathered during an extended field campaign over the Atlantic Ocean in support of the Lidar In-space Technology Experiment are used to generate 16 moisture and temperature retrievals that are then compared with dropsonde measurements. The technique utilizes lidar-derived statistics on the height of cumulus clouds that frequently cap the MABL to estimate the lifting condensation level. Combining this information with radiometer-derived sea surface temperature measurements, an estimate of the near-surface moisture can be obtained to an accuracy of about 0.8 g kg−1. Lidar-derived statistics on convective plume height and coverage within the MABL are then used to infer the profiles of potential temperature and moisture with a vertical resolution of 20 m. The rms accuracy of derived MABL average moisture and potential temperature is better than 1 g kg−1 and 1°C, respectively. The method relies on the presence of a cumulus-capped MABL, and it was found that the conditions necessary for use of the technique occurred roughly 75% of the time. The synergy of simple aerosol backscatter lidar and infrared radiometer data also shows promise for the retrieval of MABL moisture and temperature from space.


2021 ◽  
Author(s):  
Pierre-Etienne Brilouet ◽  
Marie Lothon ◽  
Sandrine Bony

<p>Tradewind clouds can exhibit a wide diversity of mesoscale organizations, and the turbulence of marine atmospheric boundary layer (MABL) can exhibit coherent structures and mesoscale circulations. One of the objectives of the EUREC4A (Elucidating the role of cloud-circulation coupling in climate) field experiment was to better understand the tight interplay between the mesoscale organization of clouds, boundary-layer processes, and the large-scale environment.</p><p>During the experiment, that took place East of Barbados over the Western Tropical Atlantic Ocean in Jan-Feb 2020, the French ATR-42 research aircraft was devoted to the characterization of the cloud amount and of the subcoud layer structure. <span>During its 17 research flights, </span><span>it</span> <span>sampled a </span><span>large diversity of large scale conditions and </span><span>cloud patterns</span><span>. </span>Multiple sensors onboard t<span>he aircraft measure</span><span>d</span> <span>high-frequency </span><span>fluctuations of potential temperature, water vapour mixing ratio and wind , allowing </span><span>for </span><span>an extensive characterization </span><span> of</span><span> the turbulence </span><span>within</span><span> the subcloud layer. </span> <span>A </span><span>quality-controled and calibrated turbulence data</span><span>set</span><span> was produced </span><span>on the basis of these measurements</span><span>, which is now </span><span> available on the EUREC4A AERIS data portal.</span></p><p><span>The </span><span>MABL </span><span>turbulent </span><span>structure i</span><span>s</span><span> studied </span><span>using this dataset, </span><span>through a spectral analysis </span><span>of the vertical velocity</span><span>. Vertical profiles of characteristic length scales reveal a non-isotropic structure with a stretching of the eddies along the mean wind. The organization strength of the turbulent field is also explored </span><span>by defining</span><span> a diagnostic based on the shape of the vertical velocity spectrum. </span><span>The </span><span>structure and the degree of organization of the </span><span>subcloud layer </span><span>are</span><span> characterized for </span><span> different type</span><span>s</span><span> of mesoscale </span><span>convective </span><span>pattern </span><span>and </span><span>as a function of</span><span> the large-scale environment, </span><span>including</span> <span>near-</span><span>surface wind </span><span>and</span> <span>lower-</span><span>tropospheric</span><span> stability conditions.</span></p><p> </p>


Sign in / Sign up

Export Citation Format

Share Document