Metal-complexing Ligands and Metal Speciation in Sediment Pore Waters: Implications for Sediment/water Exchange and Water Column Speciation

1997 ◽  
Author(s):  
John R. Donat ◽  
David J. Burdige

As emphasized by Dr Seilacher in his introduction to this symposium, and illustrated in the contribution by Mr Martill, some of the most important examples of fossil Lagersätten occur in marine shales of Mesozoic age. Many of the factors that control the types and preservation of fossils are the same as those that affect the authigenic mineralogy and geochemistry of the shales, notably the degree of aeration or stagnation of the water column and the quantity and quality of the organic matter supplied to the sediment. Perhaps the most important diagenetic reaction in marine shales is sulphate reduction by bacteria that are obligate anaerobes. They can operate in anoxic waters or in ‘reducing microenvironments’ (such as concentrations of organic matter, or enclosed voids within shells) in sediments whose pore waters are kept generally oxic by the effects of burrowing organisms. Sulphate is reduced to sulphide and in the presence of reduced iron this can be precipitated as iron sulphides, normally found in ancient sediments in the form of pyrite. Pyrite is thus a key mineral in studying shale diagenesis, for its geochemistry as well as for its direct importance in preserving fossils by replacement of soft-parts (see, for example, Stürmer 1984), of aragonitic shells (see, for example, Fisher 1985) and by forming internal moulds of chambered shells (see, for example, Hudson & Palframan 1969; Hudson 1982).


2013 ◽  
Vol 10 (1) ◽  
pp. 53-66 ◽  
Author(s):  
W. J. Burt ◽  
H. Thomas ◽  
K. Fennel ◽  
E. Horne

Abstract. Exchanges between sediment pore waters and the overlying water column play a significant role in the chemical budgets of many important chemical constituents. Direct quantification of such benthic fluxes requires explicit knowledge of the sediment properties and biogeochemistry. Alternatively, changes in water-column properties near the sediment-water interface can be exploited to gain insight into the sediment biogeochemistry and benthic fluxes. Here, we apply a 1-D diffusive mixing model to near-bottom water-column profiles of 224Ra activity in order to yield vertical eddy diffusivities (KZ), based upon which we assess the diffusive exchange of dissolved inorganic carbon (DIC), nutrients and oxygen (O2), across the sediment-water interface in a coastal inlet, Bedford Basin, Nova Scotia, Canada. Numerical model results are consistent with the assumptions regarding a constant, single benthic source of 224Ra, the lack of mixing by advective processes, and a predominantly benthic source and sink of DIC and O2, respectively, with minimal water-column respiration in the deep waters of Bedford Basin. Near-bottom observations of DIC, O2 and nutrients provide flux ratios similar to Redfield values, suggesting that benthic respiration of primarily marine organic matter is the dominant driver. Furthermore, a relative deficit of nitrate in the observed flux ratios indicates that denitrification also plays a role in the oxidation of organic matter, although its occurrence was not strong enough to allow us to detect the corresponding AT fluxes out of the sediment. Finally, comparison with other carbon sources reveal the observed benthic DIC release as a significant contributor to the Bedford Basin carbon system.


2014 ◽  
Vol 11 (8) ◽  
pp. 2211-2224 ◽  
Author(s):  
E. Metzger ◽  
D. Langlet ◽  
E. Viollier ◽  
N. Koron ◽  
B. Riedel ◽  
...  

Abstract. Long-term experimental studies suggest that, under transient anoxic conditions, redox fronts within the sediment shift upwards, causing sequential rise and fall of benthic fluxes of reduced species (Mn(II), Fe(II) and S(-II)). Infaunal benthic organisms are associated with different redox fronts as micro-habitats and must be affected by such changes during natural hypoxia events. In order to document the geochemical evolution of the sediment during prolonged anoxia in the framework of an in situ experiment designed to mimic natural conditions, benthic chambers were deployed on the seafloor of the Northern Adriatic and sampled after 9, 30 and 315 days of incubation. Oxygen and sulfide were measured continuously in the early stages (9 days) of the experiment. High-resolution pore water profiles were sampled by DET probes and redox-sensitive species (S(VI), Mn(II) and Fe(II)) and alkalinity were measured. Starting oxygen saturation was about 80% within the chamber. After 7 days, anoxia was established in the bottom waters within the chambers. Mn(II) and Fe(II) started diffusing towards the anoxic water column until they reached the surficial sediment. Being reoxidized there, Mn and Fe reprecipitated, giving a rusty coloration to the seafloor. Infaunal species appeared at the sediment surface. After 20 days, all macro-organisms were dead. Decomposition of macro-organisms at the sediment–water interface generated S(-II) within the entire height of the chamber, leading to a downward flux of sulfides into the sediment, where they were quickly oxidized by metallic oxides or precipitated as FeS. S(-II) was below detection in the water column and pore waters at the end of the experiment. Our results suggest that S(-II) enrichment in the water column of coastal systems, which are episodically anoxic, is strongly controlled by the biomass of benthic macrofauna and its decay during anoxia, whereas its residence time in the water column is controlled by iron availability (as solid oxides or as dissolved reduced cations) within the sediment, even without water circulation.


2018 ◽  
Vol 15 (16) ◽  
pp. 4973-4993 ◽  
Author(s):  
Christian Schlosser ◽  
Katrin Schmidt ◽  
Alfred Aquilina ◽  
William B. Homoky ◽  
Maxi Castrillejo ◽  
...  

Abstract. The island of South Georgia is situated in the iron (Fe)-depleted Antarctic Circumpolar Current of the Southern Ocean. Iron emanating from its shelf system fuels large phytoplankton blooms downstream of the island, but the actual supply mechanisms are unclear. To address this, we present an inventory of Fe, manganese (Mn), and aluminium (Al) in shelf sediments, pore waters, and the water column in the vicinity of South Georgia, alongside data on zooplankton-mediated Fe cycling processes, and provide estimates of the relative dissolved Fe (DFe) fluxes from these sources. Seafloor sediments, modified by authigenic Fe precipitation, were the main particulate Fe source to shelf bottom waters as indicated by the similar Fe ∕ Mn and Fe ∕ Al ratios for shelf sediments and suspended particles in the water column. Less than 1 % of the total particulate Fe pool was leachable surface-adsorbed (labile) Fe and therefore potentially available to organisms. Pore waters formed the primary DFe source to shelf bottom waters, supplying 0.1–44 µmol DFe m−2 d−1. However, we estimate that only 0.41±0.26 µmol DFe m−2 d−1 was transferred to the surface mixed layer by vertical diffusive and advective mixing. Other trace metal sources to surface waters included glacial flour released by melting glaciers and via zooplankton egestion and excretion processes. On average 6.5±8.2 µmol m−2 d−1 of labile particulate Fe was supplied to the surface mixed layer via faecal pellets formed by Antarctic krill (Euphausia superba), with a further 1.1±2.2 µmol DFe m−2 d−1 released directly by the krill. The faecal pellets released by krill included seafloor-derived lithogenic and authigenic material and settled algal debris, in addition to freshly ingested suspended phytoplankton cells. The Fe requirement of the phytoplankton blooms ∼ 1250 km downstream of South Georgia was estimated as 0.33±0.11 µmol m−2 d−1, with the DFe supply by horizontal/vertical mixing, deep winter mixing, and aeolian dust estimated as ∼0.12 µmol m−2 d−1. We hypothesize that a substantial contribution of DFe was provided through recycling of biogenically stored Fe following luxury Fe uptake by phytoplankton on the Fe-rich shelf. This process would allow Fe to be retained in the surface mixed layer of waters downstream of South Georgia through continuous recycling and biological uptake, supplying the large downstream phytoplankton blooms.


2014 ◽  
Vol 11 (18) ◽  
pp. 5245-5258 ◽  
Author(s):  
K. Sturm ◽  
Z. Yuan ◽  
B. Gibbes ◽  
U. Werner ◽  
A. Grinham

Abstract. Reservoirs have been identified as an important source of non-carbon dioxide (CO2) greenhouse gases with wide ranging fluxes for reported methane (CH4); however, fluxes for nitrous oxide (N2O) are rarely quantified. This study investigates CH4 and N2O sources and emissions in a subtropical freshwater Gold Creek Reservoir, Australia, using a combination of water–air and sediment–water flux measurements and water column and pore water analyses. The reservoir was clearly a source of these gases as surface waters were supersaturated with CH4 and N2O. Atmospheric CH4 fluxes were dominated by ebullition (60 to 99%) relative to diffusive fluxes and ranged from 4.14 × 102 to 3.06 × 105 μmol CH4 m−2 day−1 across the sampling sites. Dissolved CH4 concentrations were highest in the anoxic water column and sediment pore waters (approximately 5 000 000% supersaturated). CH4 production rates of up to 3616 ± 395 μmol CH4 m−2 day−1 were found during sediment incubations in anoxic conditions. These findings are in contrast to N2O where no production was detected during sediment incubations and the highest dissolved N2O concentrations were found in the oxic water column which was 110 to 220% supersaturated with N2O. N2O fluxes to the atmosphere were primarily through the diffusive pathway, mainly driven by diffusive fluxes from the water column and by a minor contribution from sediment diffusion and ebullition. Results suggest that future studies of subtropical reservoirs should monitor CH4 fluxes with an appropriate spatial resolution to ensure capture of ebullition zones, whereas assessment of N2O fluxes should focus on the diffusive pathway.


2009 ◽  
Vol 59 (2) ◽  
pp. 333-350 ◽  
Author(s):  
Nicole Kowalski ◽  
Olaf Dellwig ◽  
Melanie Beck ◽  
Maik Grunwald ◽  
Sibylle Fischer ◽  
...  

2017 ◽  
Vol 135 (1-2) ◽  
pp. 49-67 ◽  
Author(s):  
J. K. Klar ◽  
W. B. Homoky ◽  
P. J. Statham ◽  
A. J. Birchill ◽  
E. L. Harris ◽  
...  

2013 ◽  
Vol 10 (12) ◽  
pp. 19485-19508
Author(s):  
K. Sturm ◽  
Z. Yuan ◽  
B. Gibbes ◽  
A. Grinham

Abstract. Reservoirs have been identified as an important source of non-CO2 greenhouse gases, especially methane (CH4). This study investigates CH4 and nitrous oxide (N2O) sources and emissions in a subtropical freshwater reservoir Gold Creek Dam, Australia using a combination of water–atmosphere and sediment–water flux measurements, water column sampling and pore water analysis. The reservoir was clearly a net source as surface waters were supersaturated with CH4 and N2O. CH4 flux rates were one to two orders of magnitude higher than N2O rates when expressed as CO2 equivalents. Atmospheric CH4 fluxes were dominated by ebullition (<60%) relative to diffusive fluxes and ranged from 165 to 6526 mg CO2 eq m−2 d−1. Dissolved CH4 concentrations in sediment pore waters were approximately 5 000 000% supersaturated. However, dissolved N2O concentrations were 140 to 220% supersaturated and generally confined to the water column greatly reducing the likelihood of ebullition. The flux measurements from this study support past findings that demonstrate the potential important contribution of emissions from subtropical reservoirs to overall GHG budgets. Results suggest future efforts to monitor and model emissions that concentrate on quantifying the ebullition pathway for CH4 as this was dominant relative to diffusive fluxes as well as total N2O emissions.


2021 ◽  
Author(s):  
Asa Johannesen ◽  
Øystein Patursson ◽  
Jóhannus Kristmundsson ◽  
Signar Pæturssonur Dam ◽  
Mats Mulelid ◽  
...  

Due to increasing demand for salmon and environmental barriers preventing expansion in established sites, salmon farmers seek to move or expand their production to more exposed sites. In this study we investigate the effects of strong currents and waves on the behaviour of salmon and how they choose to use the space available to them. Using video cameras and echo sounders, we show that fish prefer to use the entire water column, narrowing their range only as a response to cage deformation, waves, or daylight. Conversely, fish show strong horizontal preference, mostly occupying the portions of the cage exposed to currents. Additionally, waves cause salmon to move away from the sides of the cage. Even when strong currents and waves decrease the amount of available space, salmon choose to occupy the more exposed part of the cage. This indicates that at least with good water exchange, the high biomass caused by limited vertical space is not so aversive that salmon choose to move to less desirable areas of the cage. However, the dispersal throughout the entire available water column indicates that keeping the cone portion of the cage available in strong currents would be beneficial to salmon welfare.


Sign in / Sign up

Export Citation Format

Share Document