scholarly journals Engineering Principles Impacting High-tunnel Environments

2009 ◽  
Vol 19 (1) ◽  
pp. 30-33 ◽  
Author(s):  
Gene A. Giacomelli

High tunnels are a special type of greenhouse with primary operational goals of season extension, crop quality improvement, and new crop production opportunities to reach unique markets. From an engineering viewpoint, high tunnels have many of the same design concerns as larger, more complex greenhouses. They capitalize on the greenhouse effect as do all enclosed plant growth structures. However, less automated environmental control systems are required for the desired crop production. Tunnel designs are less complex and less expensive than large high-technology greenhouse ranges, but they must be designed and constructed with the fundamental assurance of structural stability, safety, efficient layout, appropriate environmental control, and effective crop management in mind.

1993 ◽  
Vol 3 (1) ◽  
pp. 92-95 ◽  
Author(s):  
Otho S. Wells ◽  
J. Brent Loy

Crop growth is enhanced with the use of relatively inexpensive rowcovers and high tunnels. Even though these structures do not provide the same degree of environmental control as greenhouses, they modify the climate sufficiently to lengthen the growing season from 1 to 4 weeks in the spring and 2 to 8 weeks in the fall. Rowcovers generally remain over a crop for 2 to 4 weeks, whereas a high tunnel may function for an entire growing season. Both systems require a relatively low capital investment, provide a good return on investment, and improve the ability of new growers to succeed in the crop production business. The selection of either rowcovers or high tunnels will depend on the management program of a grower; however, both growing systems potentially are economically viable means of season extension.


2018 ◽  
Vol 47 (3) ◽  
pp. 452-476 ◽  
Author(s):  
Shuay-Tsyr Ho ◽  
Jennifer E. Ifft ◽  
Bradley J. Rickard ◽  
Calum G. Turvey

Fruit producers in the Eastern United States face a wide range of weather-related risks that have the capacity to largely impact yields and profitability. This research examines the economic implications associated with responding to these risks for sweet cherry production in three different systems: high tunnels, revenue insurance, and weather insurance. The analysis considers a distribution of revenue flows and costs using detailed price, yield, and weather data between 1984 and 2013. Our results show that the high tunnel system generates the largest net return if significant price premiums exist for earlier and larger fruit.


2010 ◽  
Vol 20 (3) ◽  
pp. 639-645 ◽  
Author(s):  
Sharon J.B. Knewtson ◽  
Edward E. Carey ◽  
M.B. Kirkham

A survey was conducted of 81 growers managing 185 high tunnels in Missouri, Kansas, Nebraska, and Iowa to collect information about their high tunnel management practices. The survey was administered from 2005 to 2007 using internet-based and written forms. The average respondent had 4 years of high tunnel experience. The oldest tunnel still in use was 15 years old. Twenty-five percent of respondents grew crops in their high tunnels year-round. Tomato (Solanum lycopersicum), lettuce (Lactuca sativa), spinach (Spinacia oleracea), cucumber (Cucumis sativus), pepper (Capsicum spp.), leafy greens, and flowers were the most common crops. Organic soil amendments were used exclusively by 35% of growers, and in combination with conventional fertilizers by an additional 50% of growers. The summary of management practices is of interest to growers and the industries and university research and extension scientists who serve them. Growers typically reported satisfaction with their high tunnels. Growers with more than one high tunnel had often added tunnels following the success of crop production in an initial tunnel. Labor for crop maintenance was the main limiting factor reported by growers as preventing expanded high tunnel production.


2019 ◽  
Vol 29 (4) ◽  
pp. 461-467
Author(s):  
Karen L. Panter ◽  
Timmothy M. Gergeni ◽  
Casey P. Seals ◽  
Andrea R. Garfinkel

High tunnels are gaining popularity for their use in horticultural crop production. However, little is known about the effect of high tunnel orientation on plant growth and development. In this set of studies, we show tunnel orientation does not necessarily affect the production of cut sunflower (Helianthus annuus) and culinary herbs oregano (Origanum vulgare), marjoram (Origanum majorana), and garlic chive (Allium tuberosum). Two high tunnels, one with the long axis oriented north-south (NS) and the other east-west (EW), were used to test the effects of high tunnel orientation on several crops over a 5-year period: cut sunflower (2012 and 2016); marjoram, oregano, and garlic chive (2013 and 2014); and garlic chive (2015). The tunnels are 12 × 16 ft, smaller than those used in commercial production. The size would be appropriate for hobby and seasonal production of horticultural crops for local markets. Cut sunflower stems were similar lengths both years in both high tunnels. Sunflower times to harvest were different between cultivars but not between high tunnels. Oregano fresh weight yields were highest in the NS tunnel in 2013 but similar between tunnels in 2014. Marjoram fresh weights were highest in 2013 in the EW tunnel but highest in 2014 in the NS tunnel. Garlic chive fresh weights were similar between tunnels all 3 years. We show that differences are more a function of innate cultivar characteristics than which way small high tunnels are oriented.


HortScience ◽  
2006 ◽  
Vol 41 (4) ◽  
pp. 1067D-1067
Author(s):  
H. Chris Wien

Flowering plants grown and marketed locally as cut flowers have become economically important in recent years, concentrating on species that are too delicate to ship long distances. Although the bulk of this production is done outdoors, extending the season at both ends by using high tunnels (unheated greenhouse structures covered with a single layer of polyethylene), has become popular. To determine the advantages and drawbacks of using high tunnels as season extension structures for cut flowers, variety trials of seven and four flower species were conducted in 2004 and 2005, respectively, both in a high tunnel and in an adjacent field. In the cool, rainy 2004 season, plants in the tunnel were ready for harvest 20 days sooner than the same varieties outside. Outside plants had 25% more stems than tunnel-grown plants, but there was no difference in average stem length. In the dry, warm season of 2005, tunnel-grown plants were 8 days earlier, and had 58% more stems, which were increased in length by 16% over field-grown plants. Lisianthus (Eustoma grandiflorum) and snapdragons (Antirrhinum) were grown in both seasons, and gave similar results both times. Tunnel-grown lisianthus showed a 34% increase in stems per plant, and an 8% increase in stem length, and the stems could be harvested 8 days earlier. Snapdragons were 9 days earlier in the tunnel both years, but tunnel-grown plants produced 22% fewer stems. Disease and insect pressures occurred in both locations, but pest species causing problems differed. With careful choice of species to be grown in tunnels, cut flower production in this environment can be optimized.


HortScience ◽  
2015 ◽  
Vol 50 (3) ◽  
pp. 395-401 ◽  
Author(s):  
Tiffany L. Maughan ◽  
Kynda R. Curtis ◽  
Brent L. Black ◽  
Daniel T. Drost

Strawberry production in the U.S. Intermountain West is limited by harsh climatic conditions and competition from domestic producers and imports. Using season extension methods to combat climatic conditions may be effective but generally increases production costs. This study evaluates the economic returns to implementing high tunnels, low tunnels, and in-ground supplemental heating to strawberry production (Seascape and Chandler cultivars) in northern Utah. The high tunnel provided a net return of $1,943.57 or $15,548.56 per hectare assuming eight high tunnels per hectare. The addition of low tunnels within the high tunnel led to a positive increase in net returns for ‘Seascape’ but not for ‘Chandler’ production. Supplemental in-ground heating increased net returns by up to 50% for both cultivars, primarily as a result of higher pre-season yield and market pricing. Study results find that season extension technologies can successfully increase net returns to strawberry production through early and increased yields, when strawberries are sold primarily through local direct markets.


HortScience ◽  
2012 ◽  
Vol 47 (9) ◽  
pp. 1283-1290 ◽  
Author(s):  
Suzanne O’Connell ◽  
Cary Rivard ◽  
Mary M. Peet ◽  
Chris Harlow ◽  
Frank Louws

Organic and heirloom tomatoes are high-value products with growing demand but there are many challenges to successful cultivation. A systems comparison study was carried out to evaluate the production of the popular heirloom tomato ‘Cherokee Purple’ (Solanum lycopersicum L.) under high tunnel and open field systems in North Carolina from 2007 to 2008. Management of the high tunnel (i.e., temperature and irrigation), weather events as well as pest and disease pressure influenced crop quality and yield. The high tunnel and field systems achieved similar total yields (100 t·ha−1) the first season but yields were 33% greater in the high tunnel system than the field system in the second year (100 t·ha−1 and 67 t·ha−1, respectively). Both years, the tomatoes were planted in high tunnels 1 month earlier and harvested 3 weeks earlier than the field. The accumulation of ≈1100 growing degree-days (GDD) was required in both systems before 50% of the fruit was harvested. Fruit cracking, cat-facing, blossom-end rot, and insect damage were the major categories of defects in both systems. Incidence of both Tomato Spotted Wilt Virus (TSWV) and Gray Leaf Spot (GLS) were lower in the high tunnel compared with the field in 2007 and 2008, respectively. Results of this study suggest that with proper management techniques, high tunnels can optimize yields, increase fruit quality, and provide season extension opportunities for high-value horticultural crops.


2009 ◽  
Vol 19 (1) ◽  
pp. 25-29 ◽  
Author(s):  
William J. Lamont

High tunnels have been used for many years worldwide, but in the United States, the utilization of high tunnel technology for the production of horticultural crops is a relatively recent phenomenon. Single and multibay high tunnels are used throughout the world to extend the production season. One big advantage of high tunnels in the temperate and tropical regions of the world is the exclusion of rain, thus reducing the amount of disease pressure and crop loss while improving crop quality and shelf life. In temperate regions of the world, high tunnels are used to increase temperatures for crop production in spring, fall, and sometimes winter seasons. The use of high tunnels in their many forms continues to increase worldwide, and many different kinds of vegetables, small fruit, tree fruit, and flowers are being cultivated. One impediment in determining high tunnel usage worldwide is the failure of many authors and agricultural census takers to distinguish between high tunnels and plastic-covered greenhouses. In many instances, they are presented together under the heading “protected cultivation.”


HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1181g-1181
Author(s):  
Steven H. Schwartzkopf

The use of computerized environmental control systems for greenhouses and plant growth chambers is increasing in frequency. Computerized systems provide the potential for more accurate environmental control, while at the same time allowing changes to be made more easily than with hard-wired mechanical control systems. The ease of changing allows switching sensor types, relocating sensors and resetting control parameters without significantly affecting the overall system design. Another advantage of computerized control systems is that they provide a method for recording environmental data as they simultaneously implement their programmed control algorithms. This data can subsequently be transferred to other computers for further processing and analysis. Computerized controls also support the possibility of implementing environmental control based on either mathematical models which simulate plant growth, or on actual monitored plant performance data such as nutrient uptake or leaf temperature. This paper discusses in detail these and other advantages of using computerized environmental control systems, as well as describing the problems and disadvantages associated with their implementation and use.


Sign in / Sign up

Export Citation Format

Share Document