scholarly journals THE INFLUENCE OF SELF- AND CROSS-POLLINATION ON FRUITING IN SOUTHERN HIGHBUSH BLUEBERRIES

HortScience ◽  
1991 ◽  
Vol 26 (5) ◽  
pp. 486g-486
Author(s):  
Gregory A. Lang ◽  
Robert G. Danka

Southern highbush (“low chill tetraploid”) blueberries are an earlier-ripening, self pollen-compatible alternative to rabbiteye blueberries. `Sharpblue', the first southern highbush cultivar planted on a commercial scale, has been shown to require cross-pollination for optimal fruit size and earliness of ripening. `Gulfcoast', a recently released cultivar for Gulf states growers of about latitude 30 to 32 N, differs in heritage from `Sharpblue', incorporating about 50% more self-compatible northern highbush germplasm. `Gulfcoast' fruit development after honey bee-mediated self- or cross-pollination with `Sharpblue' was similar in terms of set (85.5 vs. 82.2%), weight (1.26 vs. 1.18g), and seed number (32.8 vs. 33.6), respectively. Cross-pollination did not result in significantly earlier ripening. Thus, `Gulfcoast' appears to be more self-fertile than `Sharpblue'. Other closely-related cultivars are being examined to determine the genetic influence on potential for self-fruitfulness.

2016 ◽  
Vol 26 (2) ◽  
pp. 213-219 ◽  
Author(s):  
Sarah K. Taber ◽  
James W. Olmstead

Cross-pollination has been associated with improved fruit set, weight, and shortened time to ripening in southern highbush blueberry [SHB (Vaccinium corymbosum interspecific hybrids)]. Because of this, growers commonly plant two or more cultivars in small blocks to facilitate cross-pollination. However, many SHB cultivars may vary in the degree of improvement in each parameter after cross-pollination. Understanding the impacts of cross-pollination on a particular cultivar is crucial to forming planting recommendations, particularly as growers begin to transition to fields designed for machine harvest where large solid blocks would increase the harvest efficiency. The objective of this study was to examine the effects of cross- and self-pollination among 13 commonly planted or newly released SHB cultivars. Cross-pollination typically improved fruit set, fruit weight, and seed number while decreasing the average days to harvest. Cross-pollinated fruit always weighed more than self-pollinated fruit from the same cultivar, which was highly correlated to seed number per fruit. Although there was variation for each trait, interplanting with another unrelated cultivar sharing a similar bloom time remains the best recommendation to ensure early, high yield among these SHB cultivars.


1991 ◽  
Vol 116 (5) ◽  
pp. 770-773 ◽  
Author(s):  
Gregory A. Lang ◽  
Robert G. Danka

To study self- and cross-pollination effects on fruit development in southern highbush (mainly Vaccinium corymbosum L.) blueberries, `Sharpblue' plants were caged with honey bees (Apis mellifera L.) and other `Sharpblue' or `Gulfcoast' plants at anthesis. Ratios of pollinizer: fruiting flowers ranged from 2.1 to 4.5. Cross-pollination increased fruit size by ≈14% and seed count by 27% but did not influence fruit set. Overall, seed count decreased by 58% during the 30 days of harvest, but this did not directly affect fruit size. Seed count appeared to influence earliness of ripening as much as it influenced fruit size. Cross-pollination increased the harvest percentage of early-ripening fruits by ≈140% and of premium market fruits (those ≥ 0.75 g) by 13% and decreased the percentage of small fruits by 66%. Consequently, a 43% increase in premium early market crop value (nearly $5000/ha) resulted from optimizing `Sharpblue' cross-pollination.


1971 ◽  
Vol 11 (49) ◽  
pp. 248 ◽  
Author(s):  
A Selimi

Effects on fruit density, fruit size, and fruit fertilization (seed count) of several degrees of fruit bud removal three to four weeks before bloom, was studied on Williams Bon Chretien and Packham's Triumph pears. The effects were studied in the presence or absence of cross pollination. Fruit set increased with increasing severity of blossom bud removal, indicating that poor setting was not due to faulty flowers. This was also confirmed by hand pollination of the clusters on unthinned limbs, where fruit set was much higher than on unthinned unpollinated limbs. Fruit density in Packham's was not reduced even by 80 per cent of fruit bud removal, and in Williams' fruit density was significantly reduced at 60 or 40 per cent of fruit bud removal, in a heavy or intermediate flowering years, respectively, whereas in a poor flowering year, fruit density was not significantly reduced even by 80 per cent of bud removal. Heavy thinning resulted in increased fruit size in Williams' but not in Packham's pears. Hand poIlination or bouquets increased seed number and fruit size greatly in \Villiams7 and increased seed number but not fruit size in Packham's.


HortScience ◽  
1999 ◽  
Vol 34 (4) ◽  
pp. 607-610 ◽  
Author(s):  
B.E. Maust ◽  
J.G. Williamson ◽  
R.L. Darnell

Floral budbreak and fruit set in many southern highbush blueberry (SHB) cultivars (hybrids of Vaccinium corymbosum L. with other species of Vaccinium) begin prior to vegetative budbreak. Experiments were conducted with two SHB cultivars, `Misty' and `Sharpblue', to test the hypothesis that initial flower bud density (flower buds/m cane length) affects vegetative budbreak and shoot development, which in turn affect fruit development. Flower bud density of field-grown plants was adjusted in two nonconsecutive years by removing none, one-third, or two-thirds of the flower buds during dormancy. Vegetative budbreak, new shoot dry weight, leaf area, and leaf area: fruit ratios decreased with increasing flower bud density in both cultivars. Average fruit fresh weight and fruit soluble solids decreased in both cultivars, and fruit ripening was delayed in `Misty' as leaf area: fruit ratios decreased. This study indicates that because of the inverse relationship between flower bud density and canopy establishment, decreasing the density of flower buds in SHB will increase fruit size and quality and hasten ripening.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 472f-472
Author(s):  
James R. Ballington ◽  
Susan D. Rooks

`Duplin' (NC 1852) and `Sampson' (NC 2675) are southern highbush blueberry genotypes that bloom with `Croatan', the predominant highbush cultivar in eastern North Carolina, and ripen with or slightly later than `Croatan'. `Duplin' appears to have flower bud hardiness similar to standard highbush cultivars when grown at intermediate elevations in the mountains of western North Carolina. `Sampson' appears to be bud hardy primarily in the piedmont and coastal plain of North Carolina. Yield overall has been equal to or better than `Croatan' and `O'Neal'. Fruit size, color, picking scar, firmness and flavor are superior to `Croatan'. Both `Duplin' and `Sampson' were found to be tolerant to stem blight caused by Botryosphaeria dothidea in greenhouse screening in North Carolina. `Sampson' also appears resistant to Botrytis blossom blight in Oregon. `Duplin' and `Sampson' are recommended for trial as potential replacements for `Croatan' in the commercial blueberry region of eastern North Carolina.


HortScience ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 682f-682
Author(s):  
Roisin McGarry ◽  
Jocelyn A. Ozga ◽  
Dennis M. Reinecke

Saskatoon fruits, an emerging horticultural crop across the Canadian prairies, vary greatly in size among cultivars. In this study, we compare fruit development patterns among large, medium, and small fruited cultivars of saskatoon, and assess the role of seed number and pedicel diameter on fruit size. Fruit growth patterns of four cultivars (Thiessen, Northline, Regent, and Smoky) were determined from weekly measurements of fruit diameters and fresh and dry flower/fruit weights during two consecutive growing seasons. The developmental patterns of fruit growth determined using the above criteria were similar among cultivars and between years. At maturity, the largest fruits (fresh weight) obtained were from cv. Thiessen, followed by `Northline', `Smoky', and `Regent', in descending order. Pedicel diameters (one week prior to maturity) correlated linearly with increasing fruit diameter and fresh weight. At maturity, seed number per fruit correlated linearly with increasing fruit weight. Thiessen contained significantly more seeds per fruit (4.6) than `Northline' (3.7), `Smoky' (3.2), and `Regent' (3.2).


1997 ◽  
Vol 122 (5) ◽  
pp. 616-624 ◽  
Author(s):  
Y.H. Huang ◽  
G.A. Lang ◽  
C.E. Johnson ◽  
M.D. Sundberg

Five-year old `Sharpblue' southern highbush blueberry plants (Vaccinium corymbosum L.) were self- and cross-pollinated (`O'Neal') to study peroxidase (POD) activity, isozyme patterns, and histological localization during fruit development. Cross-pollination resulted in larger and earlier-ripening fruit. Activities of soluble and bound POD were very high during fruit growth period I, with peaks at 10 and 20 days after self- and cross-pollination. Activity was much higher for cross-pollinated fruit. During fruit growth period II, POD activities were low in both pollination treatments. During ripening, soluble POD increased, then declined in both treatments. Bound POD activities increased during the color transition from blue to dark blue, with the increase greater in self-pollinated fruit. Banding patterns of soluble and bound POD isozymes and their histological localization varied by pollination treatment as well as fruit developmental stage. During fruit ripening, soluble POD activity appeared to be associated with color transition from light blue to blue, while bound POD activity appeared to be associated with color transition from blue to dark blue.


HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 537B-537
Author(s):  
Ingrith D. Martinez ◽  
P.M. Lyrene

Fruit set, fruit size, and seed production after hand pollination in a greenhouse were compared for southern highbush blueberry managed in two ways: a) 69 clones were allowed to go dormant and lose their leaves in the field before being dug and subjected to 1000 hours at 5 °C and b) 26 clones were kept growing in a greenhouse through fall and winter without leaf loss and without chilling, to induce flowering on plants that had mature leaves. On each plant in both management systems, some flowers were self-pollinated, some were cross-pollinated, and others had the styles removed before anthesis to prevent pollination. For >1000 flowers per pollination treatment on the deciduous plants, fruit set averaged 1% for no pollination, 46% for self-pollination, and 76% for cross-pollination. The corresponding values for the evergreen plants were 23%, 59%, and 81%. Parthenocarpic berries averaged 0.37 g/berry for deciduous plants and 1.01 g for evergreen plants. Both crossed and selfed berry weights averaged slightly higher for the evergreen plants than for the deciduous plants, but seed number per berry was much lower for the evergreen plants (12 seeds in crossed berries and four seeds in selfed berries) compared to deciduous plants (37 and 8). Southern highbush blueberry plants that flower without going dormant appear to have much higher parthenocarpic capabilities than those that flower after a dormant period.


HortScience ◽  
2002 ◽  
Vol 37 (3) ◽  
pp. 539-542 ◽  
Author(s):  
Jeffrey G. Williamson ◽  
Gerard Krewer ◽  
Brian E. Maust ◽  
E. Paul Miller

Experiments were conducted in north Florida and south Georgia to determine the effects of H2CN2 sprays on vegetative and reproductive growth of blueberry. In Florida, mature, field-grown `Misty' southern highbush (Vaccinium corymbosum L. hybrid) blueberry plants were sprayed to drip with 0, 10.2, or 20.4 g·L-1 of H2CN2 [hereafter referred to as 0%, 1.0%, and 2.0% (v/v) H2CN2] on 20 Dec. 1996 and 7 Jan. 1997. During the following winter, mature `Misty' southern highbush and `Climax' rabbiteye (V. ashei Reade) plants were sprayed to drip with 0, 7.6, or 15.3 g·L-1 of H2CN2 [hereafter referred to as 0%, 0.75%, and 1.5% (v/v) H2CN2] on 17 Dec. 1997 and 6 Jan. 1998. For all experiments, plants were dormant and leafless, with slightly swollen flower buds, at the time of spray applications. Generally, H2CN2 sprays increased the extent and earliness of vegetative budbreak and canopy establishment and advanced flowering slightly. The number of vegetative budbreaks usually increased linearly with increasing spray concentrations. In Florida, H2CN2 [0.75% to 1.0% (v/v)] sprays increased mean fruit fresh weight and yield, and shortened the fruit development period (FDP) compared to controls. However, H2CN2 sprays ranging in concentration from 1.5% to 2.0% (v/v) resulted in significant flower bud injury and reduced total fruit yield compared to controls. In south Georgia, 27 of 37 field trials conducted between 1991 and 1998 on several rabbiteye and southern highbush cultivars indicated that leaf development was significantly enhanced by H2CN2. H2CN2 shows potential for increasing early fruit maturity, fruit size, and yield of southern highbush and rabbiteye blueberry cultivars with poor leaf development characteristics in low-chill production regions. Chemical name used: hydrogen cyanamide (H2CN2).


Sign in / Sign up

Export Citation Format

Share Document