scholarly journals Application Method Affects Water Application Efficiency of Spray Stake-irrigated Containers

HortScience ◽  
1993 ◽  
Vol 28 (6) ◽  
pp. 625-627 ◽  
Author(s):  
William F. Lamack ◽  
Alex X. Niemiera

Studies were conducted to evaluate the effect of water application medium moisture deficit, water application rate, and intermittent application on water application efficiency {[(amount applied - amount leached)/amount applied] x 100} of spray stake-irrigated, container-grown plants. Pine bark-filled containers were irrigated to replace moisture deficits of 600, 1200, or 1800 ml; deficits were returned in single, continuous applications of 148, 220, or 270 ml·min-l. Efficiency was unaffected by application rate but decreased with increased medium moisture deficit. In the second experiment, container medium at a 600-ml deficit was irrigated with 400 or 600 ml (6570 and 100% water replacement, respectively); deficits were returned in a single, continuous application or in intermittent 100-ml applications with 30-min intervals between irrigations. Application efficiency was greater with intermittent irrigation (95% and 84% for 400- and 600-ml replacement, respectively) than with continuous irrigation (84% and 67% for 400- and 600-ml replacement, respectively). In the third experiment, pine bark was irrigated with 600 ml water (100% replacement) in 50-, 100-, or 150-ml aliquots with 20, 40, or 60 min between applications in a factorial design. Efficiency increased with decreasing application volume and increasing time between applications. Highest efficiency (86%) was achieved with an irrigation regimen of 50-ml applications with at least 40 min between applications, compared to 62% for the control treatment (a single, continuous application of 600 ml). Our results suggest that growers using spray stakes would waste less water by applying water intermittently rather than continuously.

1994 ◽  
Vol 12 (4) ◽  
pp. 198-202
Author(s):  
Nabila S. Karam ◽  
Alexander X. Niemiera

Abstract A series of sprinkler irrigation experiments were conducted to determine the influences of water application rate (WAR), pre-irrigation substrate water content (PSWC), and cyclic irrigation on water and N leaching from container-grown plants. Prior to experiments, Marigold (Tagetes erecta L. ‘Apollo’), were glass house-grown in pine bark-filled 3.8 liter (1 gal) containers. Prior to treatment, substrate was dried via evapotranspiration (ET) to targeted PSWCs. A simulated overhead irrigation system applied the daily water allotment in a single continuous application or cyclically (multiple applications); in most cases the respective ET volumes were applied to the substrate. Water application efficiency (WAE; water vol retained in substrate + water vol applied to substrate) was determined, and in some experiments, leachates were analyzed for EC, NO3-N and NH4-N. A negative linear relationship existed between WAR and WAE. Leachate NO3-N and NH4-N concentrations were unaffected by WAR, however, total N leached increased with increasing WAR. WAE of cyclic irrigation was 4% higher (absolute basis) than with continuous irrigation; WAE increased as the time interval between cyclic applications increased from 20 to 60 min. Regardless of how water was applied, WAE was inversely related to PSWC and application volume. These experiments showed that the most effective method to increase WAE is to irrigate at relatively low PSWCs; if irrigation occurs at relatively high PSWCs, then relatively low volumes should be applied.


Weed Science ◽  
1984 ◽  
Vol 32 (1) ◽  
pp. 24-27 ◽  
Author(s):  
Hossein Ghadiri ◽  
Patrick J. Shea ◽  
Gail A. Wicks

Atrazine [2-chloro-4-(ethylamino)-6-(isopropylamino)-s-triazine] retention by standing and flat wheat (Triticum aestivumL.) stubble was determined over time. Immediately following an application of 1.7 kg/ha atrazine, approximately 60% of the herbicide had been intercepted by the stubble and 40% was found in the underlying soil. After 3 weeks and 50 mm of rainfall, atrazine on standing and flat stubble had decreased by 90 and 63%, respectively, while atrazine in the soil increased nearly twofold. No atrazine was found in stubble 9 weeks after application, and only 17% of that originally applied remained in the upper 4 cm of the soil. Successive alternate-day applications of 12.5, 25, or 50 mm water on14C-atrazine retention by stubble was determined. Atrazine loss from stubble was greatest during the first water application, but there was no linear relationship between water application rate and retention of the herbicide. Atrazine loss from stubble decreased significantly following the second water application in all treatments. The amount of water applied did not influence atrazine loss following the third washing. Subsequent loss after the fourth, fifth, sixth, and seventh washings was not significant at any water application volume. After the seventh washing, atrazine residues were greatest on stubble which had received the least amount of water.


2009 ◽  
Vol 44 (7) ◽  
pp. 730-737 ◽  
Author(s):  
Alisson Jadavi Pereira da Silva ◽  
Eugênio Ferreira Coelho ◽  
Jarbas Honorio de Miranda ◽  
Stephen Ray Workman

The objective of this work was to evaluate root and water distribution in irrigated banana (Musa sp.), in order to determine the water application efficiency for different drip irrigation emitter patterns. Three drip emitter patterns were studied: two 4-L h-1 emitters per plant (T1), four 4-L h-1 emitters per plant (T2), and five 4-L h-1 emitters per plant (T3). The emitters were placed in a lateral line. In the treatment T3, the emitters formed a continuous strip. The cultivated area used was planted with banana cultivar BRS Tropical, with a 3-m spacing between rows and a 2.5-m spacing between plants. Soil moisture and root length data were collected during the first production cycle at five radial distances and depths, in a 0.20x0.20 m vertical grid. The experiment was carried out in a sandy clay loam Xanthic Hapludox. Soil moisture data were collected every 10 min for a period of five days using TDR probes. Water application efficiency was of 83, 88 and 92% for the systems with two, four and five emitters per plant, respectively. It was verified that an increase in the number of emitters in the lateral line promoted better root distribution, higher water extraction, and less deep percolation losses.


2019 ◽  
Vol 221 ◽  
pp. 84-91 ◽  
Author(s):  
Abid Sarwar ◽  
R. Troy Peters ◽  
Hani Mehanna ◽  
Mohamma Zaman Amini ◽  
Abdelmoneim Zakaria Mohamed

Sign in / Sign up

Export Citation Format

Share Document