scholarly journals RESPONSE OF OKRA TRANSPLANTS GROWS ON SOIL SOLARIZING PLOTS DURING THE ACTIVE PERIOD OF SOIL SOLARIZATION

HortScience ◽  
1994 ◽  
Vol 29 (7) ◽  
pp. 733e-733
Author(s):  
V.A. Khan ◽  
C. Stevens ◽  
J. Y. Lu ◽  
D. I. Collins ◽  
M. A. Wilson ◽  
...  

A study was conducted in 1991 to determine the effect high soil temperatures would have on `Clemson Spineless' okra plants transplanted into field plots during 60 days of active soil solarization (solar heating of the soil using clear plastic during the summer period). Solarized plots were planted to a winter cover crop which served as an organic amendment, which was rototilled into the top 15 cm of the soil before solarizing. Okra transplants were planted on the outer edges of the plots one month after the solarization process commenced and drip irrigated. Three weeks (wk) after transplanting, a complete fertilizer at the rate of 200 parts per million was applied to the plots giving the following treatment combinations: solarized non-fertilized control (SNF), non-solarized non-fertilized control (NSNF), solar fertilized (SF). and non-solarized fertilized (NSF). Results showed that the increased soil temperature did not have any deleterious effect on the okra plants grown in SNF or SF plots. However, plants grown in SF plots suffered severe fertilizer bums which affected plant density and yield. This indicated a rapid breakdown of soil organic matter provided sufficient nutrients to sustain a late-season crop of okra. Plant height, marketable yield vegetative branching and income generated were greater in SNF compared to SF, NSF and NSNF plots, respectively.

HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 471a-471
Author(s):  
Michael K. Thornton ◽  
S. Krishna Mohan

Pathogen populations, disease development and onion yield were compared in solarized, fumigated and non-treated plots during 1992 and 1993. Soil solarization was accomplished by covering plots with clear plastic for six weeks beginning in mid-August, prior to the year of onion production. Solarization was also combined with metham sodium, a plied prior to covering with plastic. Soil temperatures reached a maximum of 48°C at the 10 cm depth in solarized plots, and were consistently 10 to 15°C higher than in non-solarized plots. Disease resistant (Bravo) and susceptible (Valdez) onion cultivars were planted the following spring. Only the solarization + metham sodium treatment significantly controlled pink root and plate rot in 1992. In 1993, all solarization and fumigation treatments controlled pink root. Solarization and fumigation did not significantly increase yield in comparison to the check, except for the solarization + metham sodium treatment in 1992. Bravo exhibited lower disease incidence than Valdez in both years of the study. Bravo produced 32.7 t/ha and 6.2 t/ha higher yield than Valdez in 1992 and 1993, respectively.


Plant Disease ◽  
2008 ◽  
Vol 92 (12) ◽  
pp. 1604-1610 ◽  
Author(s):  
G. L. Peterson ◽  
K. L. Kosta ◽  
D. L. Glenn ◽  
J. G. Phillips

Studies were conducted in Arizona to determine the efficacy of soil solarization for killing teliospores of the soilborne fungal wheat pathogen Tilletia indica. In a replicated study conducted in each of 3 years, T. indica teliospores and bunted wheat kernels were buried in a Karnal bunt-infested wheat field at depths of 5, 10, and 20 cm. Replicate samples were removed from under a clear plastic solarization cover at 7-day intervals and the number of viable teliospores determined. A rapid decline in teliospore viability occurred at all treatment depths over 38 days, with efficacy comparable with methyl bromide protocols using clear plastic sheeting. Initial viability rates of 43, 71, and 82% germination were reduced to 0.1, 7.7, and 0.2% after 38 days (across all depths) in 2003, 2005, and 2006, respectively. Mean daily maximum soil temperatures at 5 and 20 cm under clear plastic in 2003, 2005, and 2006 were 67, 53 and 60°C and 43, 38, and 43°C, respectively. Under current United States Department of Agriculture disease management strategies, the method may be useful for the rapid deregulation of Karnal bunt-affected fields.


Agriculture ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 441
Author(s):  
Hans J. Kandel ◽  
Dulan P. Samarappuli ◽  
Kory L. Johnson ◽  
Marisol T. Berti

Adoption of cover crop interseeding in the northwestern Corn Belt in the USA is limited due to inadequate fall moisture for establishment, short growing season, additional costs, and need for adapted winter-hardy species. This study evaluated three cover crop treatments—no cover crop, winter rye (Secale cereale L.), and winter camelina (Camelina sativa (L.) Crantz)—which were interseeded at the R6 soybean growth stage, using two different soybean (Glycine max (L.) Merr.) maturity groups (0.5 vs. 0.9) and two row spacings (30.5 vs. 61 cm). The objective was to evaluate these treatments on cover crop biomass, soil cover, plant density, and soybean yield. Spring wheat (Triticum aestivum L.) grain yield was also measured the following year. The early-maturing soybean cultivar (0.5 maturity) resulted in increased cover crop biomass and soil cover, with winter rye outperforming winter camelina. However, the early-maturing soybean yielded 2308 kg·ha−1, significantly less compared with the later maturing cultivar (2445 kg·ha−1). Narrow row spacing had higher soybean yield, but row spacing did not affect cover crop growth. Spring wheat should not follow winter rye if rye is terminated right before seeding the wheat. However, wheat planted after winter camelina was no different than when no cover crop was interseeded in soybean. Interseeding cover crops into established soybean is possible, however, cover crop biomass accumulation and soil cover are limited.


2021 ◽  
pp. 1-10
Author(s):  
X.M. Yang ◽  
W.D. Reynolds ◽  
C.F. Drury ◽  
M.D. Reeb

Although it is well established that soil temperature has substantial effects on the agri-environmental performance of crop production, little is known of soil temperatures under living cover crops. Consequently, soil temperatures under a crimson clover and white clover mix, hairy vetch, and red clover were measured for a cool, humid Brookston clay loam under a corn–soybean–winter wheat/cover crop rotation. Measurements were collected from August (after cover crop seeding) to the following May (before cover crop termination) at 15, 30, 45, and 60 cm depths during 2018–2019 and 2019–2020. Average soil temperatures (August–May) were not affected by cover crop species at any depth, or by air temperature at 60 cm depth. During winter, soil temperatures at 15, 30, and 45 cm depths were greater under cover crops than under a no cover crop control (CK), with maximum increase occurring at 15 cm on 31 January 2019 (2.5–5.7 °C) and on 23 January 2020 (0.8–1.9 °C). In spring, soil temperatures under standing cover crops were cooler than the CK by 0.1–3.0 °C at 15 cm depth, by 0–2.4 °C at the 30 and 45 cm depths, and by 0–1.8 °C at 60 cm depth. In addition, springtime soil temperature at 15 cm depth decreased by about 0.24 °C for every 1 Mg·ha−1 increase in live cover crop biomass. Relative to bare soil, cover crops increased near-surface soil temperature during winter but decreased near-surface soil temperature during spring. These temperature changes may have both positive and negative effects on the agri-environmental performance of crop production.


2006 ◽  
Vol 98 (4) ◽  
pp. 946-950 ◽  
Author(s):  
Dennis E. Rowe ◽  
Timothy E. Fairbrother ◽  
Karamat A. Sistani

2018 ◽  
Vol 47 (2) ◽  
pp. 292-299 ◽  
Author(s):  
Amanda L Buchanan ◽  
Cerruti R R Hooks

2017 ◽  
Vol 60 (4) ◽  
pp. 1349-1355 ◽  
Author(s):  
Alessandro D’Emilio

Abstract. The aim of this study was to evaluate the performance of totally impermeable film (TIF) and virtually impermeable film (VIF), generally used in fumigation, in increasing soil temperature during greenhouse solarization treatment in comparison with a commonly used LDPE film. Preliminary laboratory measurements of the perpendicular spectral transmittance of these film were performed in solar (200-2500 nm) and infrared (2500-25,000 nm) wavelength ranges. Subsequently, a field trial was carried out in Sicily in a multi-span tunnel greenhouse, with a steel structure, covering a 90.0 m × 24.0 m surface of sandy soil. Four treatments were performed on 3 m × 24 m plots arranged in a randomized complete block design (RCBD) with three replications. For each replication, one plot was left unmulched as control, and three plots were mulched with TIF, VIF, or LDPE film. The solarization treatments were performed from 17 July to 6 September 2015. During all trials, soil temperature was measured at 5, 15, and 30 cm depths. Air temperature, air relative humidity, and total radiation flux were measured outside and inside the greenhouse. The results show that TIF and VIF both have better spectroradiometric properties than LDPE film and that the soil temperatures at 15 and 30 cm depths under TIF and VIF were significantly higher than the temperatures under LDPE film. These results encourage the use of low-dosage fumigation followed by solarization for control of soil pathogens to obtain further reduction in the amount of fumigant used. Keywords: Greenhouses, Soil solarization, Totally impermeable film (TIF), Virtually impermeable film (VIF).


2014 ◽  
Vol 18 (12) ◽  
pp. 5239-5253 ◽  
Author(s):  
I.-Y. Yeo ◽  
S. Lee ◽  
A. M. Sadeghi ◽  
P. C. Beeson ◽  
W. D. Hively ◽  
...  

Abstract. Winter cover crops are an effective conservation management practice with potential to improve water quality. Throughout the Chesapeake Bay watershed (CBW), which is located in the mid-Atlantic US, winter cover crop use has been emphasized, and federal and state cost-share programs are available to farmers to subsidize the cost of cover crop establishment. The objective of this study was to assess the long-term effect of planting winter cover crops to improve water quality at the watershed scale (~ 50 km2) and to identify critical source areas of high nitrate export. A physically based watershed simulation model, Soil and Water Assessment Tool (SWAT), was calibrated and validated using water quality monitoring data to simulate hydrological processes and agricultural nutrient cycling over the period of 1990–2000. To accurately simulate winter cover crop biomass in relation to growing conditions, a new approach was developed to further calibrate plant growth parameters that control the leaf area development curve using multitemporal satellite-based measurements of species-specific winter cover crop performance. Multiple SWAT scenarios were developed to obtain baseline information on nitrate loading without winter cover crops and to investigate how nitrate loading could change under different winter cover crop planting scenarios, including different species, planting dates, and implementation areas. The simulation results indicate that winter cover crops have a negligible impact on the water budget but significantly reduce nitrate leaching to groundwater and delivery to the waterways. Without winter cover crops, annual nitrate loading from agricultural lands was approximately 14 kg ha−1, but decreased to 4.6–10.1 kg ha−1 with cover crops resulting in a reduction rate of 27–67% at the watershed scale. Rye was the most effective species, with a potential to reduce nitrate leaching by up to 93% with early planting at the field scale. Early planting of cover crops (~ 30 days of additional growing days) was crucial, as it lowered nitrate export by an additional ~ 2 kg ha−1 when compared to late planting scenarios. The effectiveness of cover cropping increased with increasing extent of cover crop implementation. Agricultural fields with well-drained soils and those that were more frequently used to grow corn had a higher potential for nitrate leaching and export to the waterways. This study supports the effective implementation of cover crop programs, in part by helping to target critical pollution source areas for cover crop implementation.


Plant Disease ◽  
2007 ◽  
Vol 91 (7) ◽  
pp. 822-827 ◽  
Author(s):  
E. G. Cantonwine ◽  
A. K. Culbreath ◽  
K. L. Stevenson

Epidemics of early leaf spot, caused by Cercospora arachidicola, of peanut (Arachis hypogaea) are delayed in strip-tilled compared to conventionally tilled fields. This effect may be due to applications of glyphosate used to kill the winter cover crop in strip-tilled fields and/or the presence of cover crop residue at the soil surface of strip-tilled fields. Preplant herbicide (no herbicide, glyphosate, and paraquat), reciprocal residue (plus residue in conventionally tilled plots and minus residue in strip-tilled plots), and added straw mulch were evaluated to determine their effects on early leaf spot epidemics (AUDPC based on incidence and severity, and final percent defoliation) in conventionally tilled and strip-tilled plots. Additional experiments were conducted to characterize the effects of mulch (straw, fumigated straw, and plastic straw [Textraw]) treatments on disease, and to study tillage effects on disease in nonrotated peanut fields. Glyphosate and paraquat had no effect on AUDPC values or defoliation. The addition of straw to conventionally tilled plots significantly reduced disease levels. Cover crop and straw treatments had no significant effect on disease in the strip-tilled plots. AUDPC values were highest in the bare soil plots, lowest in the straw and fumigated straw plots, and intermediate in the plots with Textraw. Fewer initial infections were detected in the Textraw plots compared to the bare soil plots based on results of a trap leaf experiment. Strip-tillage did not consistently suppress early leaf spot epidemics in nonrotated fields. These results show that the presence of cover crop residue is partly responsible for the early leaf spot suppression observed in strip-tilled fields. Cover crop residue may interfere with the dispersal of primary inoculum from overwintering stroma in the soil to the plant tissues.


Sign in / Sign up

Export Citation Format

Share Document