scholarly journals Soybean Relative Maturity, Not Row Spacing, Affected Interseeded Cover Crops Biomass

Agriculture ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 441
Author(s):  
Hans J. Kandel ◽  
Dulan P. Samarappuli ◽  
Kory L. Johnson ◽  
Marisol T. Berti

Adoption of cover crop interseeding in the northwestern Corn Belt in the USA is limited due to inadequate fall moisture for establishment, short growing season, additional costs, and need for adapted winter-hardy species. This study evaluated three cover crop treatments—no cover crop, winter rye (Secale cereale L.), and winter camelina (Camelina sativa (L.) Crantz)—which were interseeded at the R6 soybean growth stage, using two different soybean (Glycine max (L.) Merr.) maturity groups (0.5 vs. 0.9) and two row spacings (30.5 vs. 61 cm). The objective was to evaluate these treatments on cover crop biomass, soil cover, plant density, and soybean yield. Spring wheat (Triticum aestivum L.) grain yield was also measured the following year. The early-maturing soybean cultivar (0.5 maturity) resulted in increased cover crop biomass and soil cover, with winter rye outperforming winter camelina. However, the early-maturing soybean yielded 2308 kg·ha−1, significantly less compared with the later maturing cultivar (2445 kg·ha−1). Narrow row spacing had higher soybean yield, but row spacing did not affect cover crop growth. Spring wheat should not follow winter rye if rye is terminated right before seeding the wheat. However, wheat planted after winter camelina was no different than when no cover crop was interseeded in soybean. Interseeding cover crops into established soybean is possible, however, cover crop biomass accumulation and soil cover are limited.

2018 ◽  
Vol 35 (3) ◽  
pp. 227-233 ◽  
Author(s):  
Natalie P Lounsbury ◽  
Nicholas D Warren ◽  
Seamus D Wolfe ◽  
Richard G Smith

AbstractHigh-residue cover crops can facilitate organic no-till vegetable production when cover crop biomass production is sufficient to suppress weeds (>8000 kg ha−1), and cash crop growth is not limited by soil temperature, nutrient availability, or cover crop regrowth. In cool climates, however, both cover crop biomass production and soil temperature can be limiting for organic no-till. In addition, successful termination of cover crops can be a challenge, particularly when cover crops are grown as mixtures. We tested whether reusable plastic tarps, an increasingly popular tool for small-scale vegetable farmers, could be used to augment organic no-till cover crop termination and weed suppression. We no-till transplanted cabbage into a winter rye (Secale cereale L.)-hairy vetch (Vicia villosa Roth) cover crop mulch that was terminated with either a roller-crimper alone or a roller-crimper plus black or clear tarps. Tarps were applied for durations of 2, 4 and 5 weeks. Across tarp durations, black tarps increased the mean cabbage head weight by 58% compared with the no tarp treatment. This was likely due to a combination of improved weed suppression and nutrient availability. Although soil nutrients and biological activity were not directly measured, remaining cover crop mulch in the black tarp treatments was reduced by more than 1100 kg ha−1 when tarps were removed compared with clear and no tarp treatments. We interpret this as an indirect measurement of biological activity perhaps accelerated by lower daily soil temperature fluctuations and more constant volumetric water content under black tarps. The edges of both tarp types were held down, rather than buried, but moisture losses from the clear tarps were greater and this may have affected the efficacy of clear tarps. Plastic tarps effectively killed the vetch cover crop, whereas it readily regrew in the crimped but uncovered plots. However, emergence of large and smooth crabgrass (Digitaria spp.) appeared to be enhanced in the clear tarp treatment. Although this experiment was limited to a single site-year in New Hampshire, it shows that use of black tarps can overcome some of the obstacles to implementing cover crop-based no-till vegetable productions in northern climates.


2020 ◽  
Vol 2 ◽  
Author(s):  
Virginia Nichols ◽  
Lydia English ◽  
Sarah Carlson ◽  
Stefan Gailans ◽  
Matt Liebman

Cool-season cover crops have been shown to reduce soil erosion and nutrient discharge from maize (Zea mays L.) and soybean [Glycine max (L.) Merr.] production systems. However, their effects on long-term weed dynamics are not well-understood. We utilized five long-term research trials in Iowa to quantify germinable weed seedbank densities and compositions after 10+ years of cover cropping treatments. All five trials consisted of zero-tillage maize-soybean rotations managed with and without the inclusion of a yearly winter rye (Secale cereal L.) cover crop. Seedbank sampling was conducted in the early spring before crop planting at all locations, with three of the five trials having grown a soybean crop the preceding year, and two a maize crop. Two of the trials (both previously soybean) showed significant and biologically relevant decreases (4,070 and 927 seeds m−2, respectively) in seedbank densities in cover crop treatments compared to controls. In another two trials, one previously maize and one previously soybean, no difference was detected in seedbank densities. In the fifth trial (previously maize), there was a significant, but biologically unimportant increase of 349 seeds m−2. All five trials' weed communities were dominated by common waterhemp [Amaranthus tuberculatus (Moq.)], and changes in seedbank composition from cover-cropping were driven by changes in this species. Although previous studies have shown that increases in cover crop biomass are strongly correlated with weed suppression, in our study we did not find a relationship between seedbank changes and the mean amount of cover crop biomass produced over a 10-years period (experiment means ranging from 0.5 to 2.0 Mg ha−1 yr−1), the stability of the cover crop biomass production, nor the amount produced going into the previous crop's growing season. We conclude that long-term use of a winter rye cover crop in a maize-soybean system has the potential to meaningfully reduce the size of weed seedbanks compared to winter fallows. However, identifying the mechanisms by which this occurs requires further research into processes such as seed predation and seed decay in cover cropped systems.


Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 353
Author(s):  
Kory L. Johnson ◽  
Hans J. Kandel ◽  
Dulan P. Samarappuli ◽  
Marisol T. Berti

Low adoption to utilize cover crops interseeded into soybean (Glycine max (L.) Merr.), in the northern Plains in the USA, is due to a short growing season and a few adapted winter-hardy species. The objective was to evaluate the impact of interseeded winter camelina (Camelina sativa (L.) Crantz) and winter rye (Secale cereale L.) using different soybean relative maturities on soybean yield, canopy coverage, spring cover crop biomass, and subsequent wheat (Triticum aestivum L.) yield. Cover crops interseeded into early-maturing (0.4–0.8) soybean cultivars had more fall coverage compared with the 0.9 maturity cultivar, but the spring biomass was similar for all maturities. The soybean yield of the 0.9 cultivar was significantly higher, 2365 kg ha−1 compared with 2037 kg ha−1 for the 0.4 cultivar. Rye outperformed winter camelina and had higher fall canopy cover (15 vs. 7%), spring canopy cover (16% vs. 4%), and higher spring biomass (313 vs. 100 kg ha−1 dry matter). Spring wheat, after rye, yielded 90% of the check. It is not recommended to plant spring wheat following winter rye, but there was no negative yield effect from winter camelina. Interseeding cover crops into soybean in the northern Plains is possible but needs further research to optimize interseeding systems.


2021 ◽  
Vol 22 (2) ◽  
pp. 155-166
Author(s):  
O. P. Kibalnik ◽  
I. G. Efremova ◽  
Yu. V. Bochkareva ◽  
A. V. Prakhov ◽  
D. S. Semin

The review considers the unique diversity and versatility of the use of sorghum crops. The dependence of the yield of biomass and grain of varieties and hybrids of sorghum crops on the applied elements of the crop cultivation technology is analyzed: width of row spacing, density of standing plants in different zones of sorghum sowing in the Russian Federation. A variety of soil and climatic conditions of sorghum cultivation regions differ in the temperature regime, the reserves of soil moisture before sowing, the level of soil fertility, which determines the need to select the optimal elements of technology that ensure the achievement of the highest yield of varieties per unit area with the lowest material and technological costs. The analysis of the ways of placing plants on the own area also indicates the significant role of varietal biological features in increasing the sorghum yield, the purpose of sowing, and the level of field contamination. With limited resources of productive moisture for high-yielding sorghum varieties with a powerful habitus, wide-row sowing with row spacing of 70 cm and the density of standing plants 80-350 thousand per 1 ha, depending on the variety. Low-growing early-maturing thin-stemmed forms of grain sorghum should be sown in the usual ordinary row way with a row spacing of 15 or 30 cm with plant density of 500-600 thousand/ha. Sudan grass varieties that can withstand high density of standing plants (depending on agroclimatic conditions – up to 1.0-3.0 million per 1 ha) are cultivated using the technology of spiked cereals. As the result of the literature data analysis, the following trend has been revealed: the drier the growing conditions, the greater the requirements for choosing the optimal parameters of agrotechnical methods of cultivating sorghum crops aimed at the reducing the number of plants per area unit considering the specific character of the region of sorghum sowing.


2019 ◽  
pp. 1578-1585
Author(s):  
Catia Aparecida Simon ◽  
Sebastião Ferreira de Lima ◽  
Meire Silvestrini Cordeiro ◽  
Vinícius Andrade Secco ◽  
Guilherme Nacata ◽  
...  

Carbon sources are exuded and deposited by different soil cover plants. They promote growth, diversity and enhancement of soil microbial community functionality, due to organic matter degradation by participating in major biochemical cycles and the availability of inorganic nutrients to plants. In this way, it is necessary to evaluate the microbiological attributes of the soil after cover cropping, which allows for surveying and monitoring the soil quality, thereby enabling rapid responses in relation to managing changes in the soil. Thus, the objective of this study was to evaluate soil microbiological attributes and soybean grain yield under the influence of different cover crops. The experiment was installed in the year 2015. The treatments were constituted by the following vegetation coverages: sorghum, millet, Urochloa ruziziensis, forage turnip, Urochloa brizantha, crambe and fallow area, with cover crops sown in succession to the soybean crop for three years prior to the date of installation of the experiment .The evaluated parameters were soil microbial biomass carbon, soil basal respiration, metabolic quotient, enzymatic activity of acid phosphatase and soil β-glucosidase, plant phytomass produced by the different cover crops and soybean yield in each area. The use of cover crops promotes higher soybean yield. The microbial activity and its efficiency were modulated according to the type of cover crop used. Soil under sorghum mulch provided lower microbial efficiency. The U. ruziziensis plant residues remain for less time on the soil. The results show that U. brizantha may be the most suitable for its use as a soil cover plant, providing improvements in its attributes.


Agronomy ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 319 ◽  
Author(s):  
Laura Vincent-Caboud ◽  
Léa Vereecke ◽  
Erin Silva ◽  
Joséphine Peigné

Organic farming relies heavily on tillage for weed management, however, intensive soil disturbance can have detrimental impacts on soil quality. Cover crop-based rotational tillage (CCBRT), a practice that reduces the need for tillage and cultivation through the creation of cover crop mulches, has emerged as an alternative weed management practice in organic cropping systems. In this study, CCBRT systems using cereal rye and triticale grain species are evaluated with organic soybean directly seeded into a rolled cover crop. Cover crop biomass, weed biomass, and soybean yields were evaluated to assess the effects of cereal rye and winter triticale cover crops on weed suppression and yields. From 2016 to 2018, trials were conducted at six locations in Wisconsin, USA, and Southern France. While cover crop biomass did not differ among the cereal grain species tested, the use of cereal rye as the cover crop resulted in higher soybean yields (2.7 t ha−1 vs. 2.2 t ha−1) and greater weed suppression, both at soybean emergence (231 vs. 577 kg ha−1 of weed biomass) and just prior to soybean harvest (1178 vs. 1545 kg ha−1). On four out of six sites, cover crop biomass was lower than the reported optimal (<8000 kg ha−1) needed to suppress weeds throughout soybean season. Environmental conditions, in tandem with agronomic decisions (e.g., seeding dates, cultivar, planters, etc.), influenced the ability of the cover crop to suppress weeds regardless of the species used. In a changing climate, future research should focus on establishing flexible decision support tools based on multi-tactic cover crop management to ensure more consistent results with respect to cover crop growth, weed suppression, and crop yields.


Agronomy ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 1041 ◽  
Author(s):  
Antonio Rodríguez-Lizana ◽  
Miguel Ángel Repullo-Ruibérriz de Torres ◽  
Rosa Carbonell-Bojollo ◽  
Manuel Moreno-García ◽  
Rafaela Ordóñez-Fernández

Cover crops (CC)s are increasingly employed by farmers in olive groves. Spontaneous soil cover is the most commonly used CC. Its continuous utilization changes ruderal flora. It is necessary to study new CCs. Living CCs provide C and nutrients to soil during decomposition. Information on this issue in olive groves is scarce. A 4-year field study involving grab sampling of Brachypodium distachyon, Sinapis alba and spontaneous CC residues was conducted to study C and nutrient release from cover crop residues. Throughout the decomposition cycles, C, N and P release accounted for 40 to 58% of the C, N and P amounts in the residues after mowing. Most K was released (80–90%). Expressed in kg per hectare, the release of C and N in Brachypodium (C: 4602, N: 181, P: 29, K: 231) and Sinapis (C: 4806, N: 152, P: 18, K: 195) was greater than that in spontaneous CC (C: 3115, N: 138, P: 21, K: 256). The opposite results were observed for K. The Rickman model, employed to estimate the amount of C, N and P in residues, yielded a good match between the simulated and measured values. In comparison to spontaneous CC, the newly proposed CCs have a higher potential to provide soil with C and N.


2020 ◽  
Vol 12 (18) ◽  
pp. 7630
Author(s):  
Robert Malone ◽  
Jurgen Garbrecht ◽  
Phillip Busteed ◽  
Jerry Hatfield ◽  
Dennis Todey ◽  
...  

To help reduce future N loads entering the Gulf of Mexico from the Mississippi River 45%, Iowa set the goal of reducing non-point source N loads 41%. Studies show that implementing winter rye cover crops into agricultural systems reduces N loads from subsurface drainage, but its effectiveness in the Mississippi River Basin under expected climate change is uncertain. We used the field-tested Root Zone Water Quality Model (RZWQM) to estimate drainage N loads, crop yield, and rye growth in central Iowa corn-soybean rotations. RZWQM scenarios included baseline (BL) observed weather (1991–2011) and ambient CO2 with cover crop and no cover crop treatments (BL_CC and BL_NCC). Scenarios also included projected future temperature and precipitation change (2065–2085) from six general circulation models (GCMs) and elevated CO2 with cover crop and no cover crop treatments (CC and NCC). Average annual drainage N loads under NCC, BL_NCC, CC and BL_CC were 63.6, 47.5, 17.0, and 18.9 kg N ha−1. Winter rye cover crop was more effective at reducing drainage N losses under climate change than under baseline conditions (73 and 60% for future and baseline climate), mostly because the projected temperatures and atmospheric CO2 resulted in greater rye growth and crop N uptake. Annual CC drainage N loads were reduced compared with BL_NCC more than the targeted 41% for 18 to 20 years of the 21-year simulation, depending on the GCM. Under projected climate change, average annual simulated crop yield differences between scenarios with and without winter rye were approximately 0.1 Mg ha−1. These results suggest that implementing winter rye cover crop in a corn-soybean rotation effectively addresses the goal of drainage N load reduction under climate change in a northern Mississippi River Basin agricultural system without affecting cash crop production.


Weed Science ◽  
2010 ◽  
Vol 58 (3) ◽  
pp. 300-309 ◽  
Author(s):  
Adam S. Davis

Termination of cover crops prior to no-till planting of soybean is typically accomplished with burndown herbicides. Recent advances in cover-crop roller–crimper design offer the possibility of reliable physical termination of cover crops without tillage. A field study within a no-till soybean production system was conducted in Urbana, IL, from 2004 through 2007 to quantify the effects of cover crop (cereal rye, hairy vetch, or bare soil control), termination method (chemical burndown or roller–crimper), and postemergence glyphosate application rate (0, 1.1, or 2.2 kg ae ha−1) on soybean yield components, weed–crop interference, and soil environmental variables. Biomass of weeds surviving management within a soybean crop following either a vetch or rye cover crop was reduced by 26 and 56%, respectively, in the rolled system compared to the burndown system. Soybean yield loss due to weed interference was unaffected by cover-crop termination method in soybean following a rye cover crop, but was higher in the rolled than burndown treatment in both hairy vetch and bare soil treatments. In soybean following a rye cover crop, regardless of termination method, yield loss to weed interference was unaffected by glyphosate rate, whereas in soybean following a vetch cover crop or bare soil, yield loss decreased with glyphosate rate. Variation in soybean yield among cover crops and cover-crop termination treatments was due largely to differences in soybean establishment, rather than differences in the soil environment. Use of a roller–crimper to terminate a cover crop preceding no-till soybean has the potential to achieve similar yields to those obtained in a chemically terminated cover crop while reducing residual weed biomass.


HortScience ◽  
1993 ◽  
Vol 28 (4) ◽  
pp. 257E-257
Author(s):  
Francis X. Mangan ◽  
Mary Jane Else ◽  
Stephen J. Herbert

Field research was conducted in Deerfield, Mass. to study the effects of different cover crop species seeded between plastic mulch on weed pressure and pepper yield. A complete fertilizer was applied before plastic was laid on Sept. 13, 1991. Two cover crop treatments were seeded Sept. 13, 1991: white clover (Trifolium repens) alone and hairy vetch (Vicia villosa) in combination with winter rye (Secale cereale). On May 27, 1992 the vetch and rye were mow-killed with the biomass left on the soil surface. Annual rye (Lolium multiflorum) was then seeded on the same day as the third cover crop treatment. The remaining two treatments were a weedy check and a hand-weeded check. Peppers were transplanted into the plastic on May 31. Both the annual rye and clover were mowed three times over the course of the experiment with the biomass left between the plastic mulch. The white clover and annual rye were much more competitive with weed species than the dead mulch of vetch and rye. The three cover crop treatments had pepper yields that were severely depressed compared to the hand-weeded treatment. Among the three cover crop treatments, only the annual rye yielded more peppers than the weedy check.


Sign in / Sign up

Export Citation Format

Share Document