scholarly journals PERFORMANCE OF `NELLIE WHITE' EASTER LILIES IN ROOT MEDIA CONTAINING COAL BOTTOM ASH

HortScience ◽  
1995 ◽  
Vol 30 (2) ◽  
pp. 189d-189
Author(s):  
Bradford C. Bearce ◽  
Lenka Smuta

Easter lilies (Lilium longiflorum Thunb. `Nellie White') were forced in root media composed of 1 peat: 1 vermiculite (v/v) mixed with coal bottom ash (CBA) at rates of 0%, 25%, 50%, 75%, or 100% CBA. Lilies in all levels of CBA were equal in mean per plant flower bud numbers, fresh and dry weights, and numbers of yellow or brown lower stem leaves. Lilies in 100% CBA were significantly lower in mean stem length than plants in 0% or 50% CBA. Plants in 100% CBA required more frequent irrigation than plants in all other media. Media pH and solution electrical conductivity increased with increase in percent CBA. Analysis of leaf tissue showed no difference in nutrient levels between plants in 0% or 100% CBA.

HortScience ◽  
1993 ◽  
Vol 28 (4) ◽  
pp. 255E-255
Author(s):  
Susan H. Butler ◽  
Bradford Bearce

Rosa × hybrida 'Samantha' plants were planted in pots of three soilless and two soil-containing media. Soilless media consisted of coal bottom ash and composted hardwood bark in 1:1, 2:1, and 3:1 ratios. Soil-containing media were equal parts soil, peat, and coal bottom ash; and a control of equal parts soil, peat, and sand. Half the pots of each media were treated with a cover crop of Hordeum vulgare L. 'Barsoy' to simulate weathering and incorporate additional organic matter prior to planting the roses. Physical and chemical properties of all five original media were examined, and production indices of two harvests were measured; including stem length, flower bud diameter, fresh weight, days to harvest and average number of blooms per plant. Results to date indicate satisfactory growth in all treatments. The three soilless treatments have produced more stems with larger flower bud diameters and shorter days-to-harvest than the soil-containing treatments. However, the fertilization, and electrical conductivity of all treatments remains below normal. Moisture retention data also show the soil-containing treatments to have higher container capacity and easily available water. Cover-cropped plants also had shorter days-to-harvest, but in one of two harvests produced flower buds of smaller diameter.


1995 ◽  
Vol 13 (4) ◽  
pp. 161-164
Author(s):  
Susan H. Butler ◽  
Bradford C. Bearce

Abstract Coal bottom ash was mixed with composted hardwood bark fines in proportions of 3:1, 2:1 and 1:1 (by vol) and with soil and peat in proportions of 1:1:1 (by vol). A mix of soil, sand and peat 1:1:1 (by vol) was used as the control root medium. Rosa × hybrida L. ‘Samantha’ plants were planted and cultured for one year and production indices recorded for four harvests. Flower stem lengths, flower bud diameters, production times, and numbers of flowers produced in media composed of ash and bark were equivalent to those in the control medium. Stem fresh weights of flowers produced in ash:bark media exceeded those in the control during third and fourth harvest. Foliar analysis showed increased B but decreased Mn and Cu in plants grown in the ash:bark media. Values of physical characteristics of all media were within acceptable ranges. Requirements for irrigation and fertilization were higher in the ash:bark media. The coal bottom ash:hardwood bark combinations showed potential as components of artificial root media for growing greenhouse roses.


HortScience ◽  
1997 ◽  
Vol 32 (3) ◽  
pp. 484B-484
Author(s):  
James Gibson ◽  
Bradford C. Bearce

Poinsettia (Euphorbia pulcherrima Willd. Ex Klotsch) cultivars `Dynasty Red', Nutcracker Pink', and `Annette Hegg Topwhite' were planted in 15-cm azalea pots containing peat: vermiculite (1:1, v:v) in which coal bottom ash sieved through 6-mm mesh was mixed in proportions of 0%, 25%, or 50% by volume. Planting date was 23 July 1996, and pinch date was 25 Aug. Harvest date at anthesis was 16 Dec. Plant heights of all cultivars were increased in the ash media. L, a, and b, values measured with a Minolta CR-200 chroma meter differed very slightly among ash levels within cultivars. Mean per plant bract cluster count was very similar among ash levels and cultivars. Mean diameter of largest bract cluster was increased above that of 0% coal ash plants for `Topwhite' plants in 50% coal ash media. Mean per plant dry weights of all three cultivars were increased over those of control plants in both 25% and 50% coal ash media. Media pH increased with increase in ash, while EC tended to decrease. Media available Ca increased with ash increase, while Mg decreased and the same pattern was noted for leaf tissue Ca and Mg. This was probably due to release of Ca from the ash, which contains about 10% Ca oxides. Tissue levels of Ca and Mg were within acceptable ranges; however, K levels also declined in plant tissue to suboptimal levels with plants in ash media.


HortScience ◽  
1996 ◽  
Vol 31 (6) ◽  
pp. 912A-912
Author(s):  
Dharmalingam S. Pitchay ◽  
B.C. Bearce

Rooted cuttings of `Supjibi' poinsettia were potted in peat vermiculite, mixed with coal bottom ash at 0%, 25%, 50%, 75%, or 100% by volume. Values of pH were higher in media containing coal bottom ash. In general, pH increased for the first 4 weeks, during which time 50–100 ppm (N) fertilizer was being applied, decreased temporarily when 200 ppm fertilizer began, and then increased and stabilized for the last 5 weeks. At first, pH tended to be higher with increase in ash, but when 200 ppm fertilizer was begun, pH became the same in all coal ash levels. Once fertilization was stopped, pH tended again to be higher in ash media. Levels of EC remained low in all media when 50–100 ppm of fertilizer was applied, but increased after 200 ppm fertilizer was begun, increasing to excessive levels 2 weeks later. With more watering, EC declined in the 0% ash, but remained high in 50% to 100% ash media. Leaf Ca content increased with increase in media ash but was below the normal range in all plants. With increase in media ash, water capacity decreased, but bulk density increased. Bract color development in plants in ash media appeared delayed.


HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 405B-405
Author(s):  
Marlene Cross ◽  
Bradford Bearce ◽  
Rajeev Arora

The vase life of roses grown in coal bottom ash (CBA)-amended media was evaluated. CBA is enriched in calcium, a nutrient implicated in delaying senescence. Two rose cultivars, Cara Mia and Dakota, were grown (from started eye plants) in four media: a 50% CBA medium and a peat:vermiculite medium amended with calcitic and dolomitic lime (1:1) were used as “high calcium” media, whereas a 25% CBA medium and a peat:vermiculite medium amended with dolomitic lime only were used as “low calcium” media. Vase life of the freshly harvested roses was evaluated. Elemental analysis of the leaves showed that roses grown in the “high calcium” media had greater calcium in the leaf tissue as well as longer vase lives (12.6 and 13.5 days) when compared to those grown in the “low calcium” media (12.1 and 10.9 days). However, petal tissue Ca was not affected by media and was not correlated with vase life. Petal tissue calcium was ≈15 times lower than leaf tissue calcium. Calcium and magnesium increased in the petal tissue over the vase life of the senescing petals. A comparison of `Cara Mia' roses (vase life of 14 days) and `Dakota' roses (vase life of 8.5 days) showed that the longer-lived `Cara Mia' had lower leaf and petal calcium levels. Both varieties followed a similar kinetics of electrolyte leakage (total E.C. and K) during their respective vase lives.


HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 496B-496
Author(s):  
J.M. Smagula ◽  
W. Litten ◽  
S. Dunham

Lowbush blueberries (Vaccinium angustifolium Ait.) in two commercial fields were treated with a preemergent soil application of ZnSO4 at 0.34 g Zn/m2 or a prune-year or crop-year foliar application of Zintrac (1.76 g Zn/L) in a RCB design with five treatments and nine blocks, using 1.5 x 15-m treatment plots. Prune-year foliar Zintrac treatments were applied 20 June and 30 June at 53.8 mL·m-2 or 20 June at 107.6 mL·m-2. A crop-year application of Zintrac at 53.8 mL·m-2 was made on 26 June at only one location. Composite leaf tissue samples taken 14 July of the prune year indicated that two applications of Zintrac at 53.8 mL·m-2 raised Zn concentrations at both locations more than a single application at twice the rate. Soil application of ZnSO4 did not raise leaf Zn concentrations compared to the control at either location. Crop-year leaf samples taken 6 July at the site that received the crop-year foliar treatment indicated no carryover effect of prune-year Zn treatments on leaf Zn concentration, but crop-year foliar application of Zn from Zintrac did raise leaf Zn concentrations compared to the controls. The characteristics of stems sampled in the fall of the prune year at each location (stem density, stem length, flower bud formation) were not meaningfully affected by any of the prune-year treatments. Blueberry yield was not affected by any of the treatments at either location. These data suggest that control plot leaf Zn concentrations of about 15 ppm in both fields were adequate. Raising the leaf Zn concentrations to about 80 ppm with two applications of Zintrac at 53.8 mL·m -2 had no effect on growth or yield.


HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 405E-405
Author(s):  
H. Brent Pemberton ◽  
Yin-Tung Wang ◽  
Garry V. McDonald ◽  
Anil P. Ranwala ◽  
William B. Miller

Case-cooled bulbs of Lilium longiflorum `Nellie White' were forced to flowering. When the tepals on the first primary flower bud split, plants were placed at 2 °C in the dark for 0, 4, or 21 days. After storage, plants were placed in a postharvest evaluation room with constant 21 °C and 18 μmol·m-2·-1 cool-white fluorescent light. Lower leaves, upper leaves, and tepals of the first primary flower from a concurrent set of plants were harvested for carbohydrate analysis using HPLC. Storage time did not affect carbohydrate levels in the lower leaf or tepal samples, but sucrose and starch levels decreased while glucose and fructose levels increased in the upper leaf tissue with increasing storage time. These changes were correlated with a decrease in postharvest longevity for the first four primary flowers. Longevity of the fifth primary flower and total postharvest life of the five primary flowers was unaffected by storage.


HortScience ◽  
1997 ◽  
Vol 32 (3) ◽  
pp. 476F-477
Author(s):  
Dharmalingam S. Pitchay ◽  
Bradford C. Bearce

Rooting performance was evaluated for three different hydrangea (Hydrangea macrophylla Thunb. `Blaumeise Lace Cap') cutting types in propagation media containing peat:sand amended with 0%, 25%, 50%, and 100% coal bottom ash (CBA) sieved through 2-mm mesh. Electrical conductivity (EC) values of all media were in acceptably low ranges, whereas pH was suboptimal in all but 100% CBA, ranging from 3.8 to 4.6 vs. 6.0 to 6.75 for 100% CBA. Available Ca was significantly higher at up to 189 mg·kg–1 in the 100% CBA. Rooted cuttings were analyzed for root counts and dry mass. Terminal tip cuttings produced 96.1 mean roots/stem compared to butterfly cuttings (76.4) and single-eye cuttings (60.7), and there was no significant difference in root dry mass among the different cutting types. Propagation media containing 50% CBA produced greater numbers of roots/stem (99.89 and 89.59, respectively). The dry mass of roots/stem was significantly higher in media with 100% CBA. Root numbers per cutting were higher in terminal tip cuttings grown in 50% and 100% CBA and butterfly cuttings in 50% CBA. On the other hand, dry mass per cutting was higher in 100% CBA as compared to the rest, except for the terminal tip and butterfly cuttings in 50% CBA. The higher pH and Ca concentration may be factors causing the better rooting performance in 100% CBA.


HortScience ◽  
1996 ◽  
Vol 31 (6) ◽  
pp. 915B-915
Author(s):  
Mark D. Sherratt ◽  
Donna V. Coffindaffer-Ballard ◽  
Bradford C. Bearce

Four poinsettia cultivars were planted in root media containing 0%, 25%, or 50% (by volume) of coal bottom ash or aged hardwood sawdust. Bract color development in `Supjibi' was delayed in media containing sawdust or ash by up to 8–12 days. Bract color initiation of `Jingle Bells' and `Success' occurred earliest in media containing 25% sawdust, but color development was delayed in 50% coal ash. Color development in `Dark Red Hegg' was not affected by ash or sawdust. Analysis of combined leaves from all four cultivars showed Fe levels below normal where media contained sawdust. Leaf Mo concentrations increased with increased media sawdust to above the normal range, but Mn levels were below the normal range in sawdust media. Leaf Ca levels were below normal in all media, possibly due to excessively high K levels in media and leaves. When fertilizer concentration and frequency were adjusted to media EC levels, control media (0% ash or sawdust) required 100 ppm N once a week. Media containing sawdust required 300 ppm to maintain EC levels between 1.25–2.25 dS·m–1 and coal ash media were irrigated with water following the sixth week after planting due to EC levels >2.25.


Sign in / Sign up

Export Citation Format

Share Document