scholarly journals Effect of Composts and Synthetic Nitrogen Fertilizer on Growth and Nematode Infestation in Lettuce and Basil

HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 864F-864
Author(s):  
Hector R. Valenzuela ◽  
Randall Hamasaki

Experiments were conducted to evaluate the effect of two different compost materials and several compost: synthetic N fertilizer ratios on the growth, yields, and nematode infestations in head and semi-head lettuce, and basil. Treatments were homemade compost at 25 MT/ha, Amend compost at 25 MT/ha, N alone at 150 kg·ha–1, and Amend compost at 25 MT/ha plus 0, 100, 200 or 300 kg N/ha. The basil trial followed the lettuce experiment on the same treatment beds to evaluate the long-term effects of compost applications. Compost plus 100 kg N/ha resulted in the greatest yields of 12 to 24 MT/ha for the semi-head and head lettuce trials, respectively. Basil was harvested for 6 months during a 10-month growth cycle. Highest basil yields of 64 MT/ha and canopy growth were obtained with a combination of compost plus synthetic N fertilizer, with 300 kg N/ha required for maximum yields during the 6-month harvesting period. By the last sampling date nematode counts were lowest for plots that received compost treatment alone and highest for the controls and for plants receiving synthetic N fertilizer alone.

Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2429
Author(s):  
Xiaoru Fan ◽  
Zekai Chen ◽  
Zihan Niu ◽  
Ruiyao Zeng ◽  
Jingmin Ou ◽  
...  

Synthetic nitrogen fertilizer substitution (NSS) with different types of organic material is a cleaner agricultural practice for reducing the application of synthetic N input in farmlands while also relieving the environmental issues caused by the discharge of organic wastes. However, the effects of the NSS practice on crop yields, being the primary objective of agricultural activity, is still uncertain in China. This study conducted a meta-analysis to assess the impacts of the NSS practices with different types of organic materials on crop yields. Results showed that the average crop yield was increased by 3.4%, with significant differences under NSS, thereby demonstrating that this practice contributed to improving crop yields, especially of rice and maize. According to published reports, the NSS practices involving chicken manure, pig manure, and crop straw increased crop yields by 4.79, 7.68, and 3.28%, respectively, with significant differences, thus demonstrating the superior effects needed for replacing synthetic N fertilizer. Moreover, substitution ratios (SR) between 0% and 60% could be suggested when using the NSS practice, with the high SR recommended when the original soil fertility was adequate for crops. Considering the long-term effects of applied organic materials, improving the grain yield with the NSS practice should be expected in the long-term. By effectively applying the NSS, this study attempted to scientifically decide on the type of organic materials and the appropriate SR based on the conditions of the soil and the crop. The results provide research information for the development of clean agricultural production and food security in China.


Agronomy ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 353 ◽  
Author(s):  
Xu-Peng Zeng ◽  
Kai Zhu ◽  
Jian-Ming Lu ◽  
Yuan Jiang ◽  
Li-Tao Yang ◽  
...  

Nitrogen (N) plays an important role in sugarcane (Saccharum spp. hybrids) growth and development; however, long-term effects of N application levels on cane and sugar production in different sugarcane cultivars under field conditions remain unclear. In this study, we investigate the agronomic, yield, and quality traits in three sugarcane cultivars (GT11, B9, and ROC22) under different N levels (0, 150, and 300 kg/ha urea) from 2015 to 2019. Continuous four-year field experiments of plant and ratoon crops were carried out by using two-factor split-plot design. The results showed that N fertilizer application improved the tillering rate, stalk diameter, plant height, stalk weight, millable stalks/ha, cane yield, sugar yield and juice rate of cane, and the difference between N application and non-N application was significant. The cane yield, millable stalks/ha, juice rate, and juice gravity purity increased with the increase of N application, but the milled juice brix and sucrose % cane decreased with the increase of N application. The sugar yield was the highest at 150 kg/ha urea application, while the cane yield was the highest at 300 kg/ha urea application. Different N fertilizer application levels significantly regulated the activities of glutamic pyruvic transaminase (GPT) and glutamic oxaloacetic transaminase (GOT) and the contents of chlorophyll and nitrate N in plant leaves, which reflected the regulation in nitrogen metabolism and alteration in dry matter production and distribution, cane yield and sugar accumulation in different sugarcane cultivars. During the four-year experiment duration, the cane yield and sugar yield generally showed ROC22 > B9 > GT11. These data suggested that 300 kg/ha urea application was suitable for the plant and first ratoon crops, and 150 kg/ha urea application was suitable for the second and third ratoon crops. Both cane and sugar yields could be the highest in a four-year production cycle under this circumstance.


1997 ◽  
Vol 129 (2) ◽  
pp. 205-217 ◽  
Author(s):  
T. M. DAVISON ◽  
W. N. ORR ◽  
B. A. SILVER ◽  
R. G. WALKER ◽  
F. DUNCALFE

The phosphorus fertilizer requirements and long term productivity of nitrogen-fertilized Gatton panic (Panicum maximum cv. Gatton) pastures, grazed by lactating dairy cows, were evaluated over 7 years. Cows grazed at 2·6 cows/ha on pastures that received annually 100 or 300 kg N/ha at each of 0, 22·5 or 45 kg P/ha. Phosphorus treatments were applied as single superphosphate, balanced for calcium by applications of gypsum.The soil had an initial available soil phosphorus content of 40 mg/kg (bicarbonate extraction). At zero P fertilizer (0P), extractable soil P declined at the rate of 1·9 mg/kg each year; at 22·5P it was maintained close to the original level while at 45P it increased at 6·6 mg/kg each year. Increased P fertilizer caused significant (P<0·01) increases in plant P concentration from year 2 onwards. In years 6 and 7 there was significantly less green pasture and leaf on offer in 300N pastures at 0P than with 22·5P and 45P. There was no influence of rate of P fertilizer at 100N on pasture quantity on offer in any year. There were clear trends at 100N of decreasing total pasture and green dry matter (DM) on offer over the 7 years, but not at 300N.Cows at 300N consumed more leaf in the diet in autumn and winter than at 100N. Leaf was 55–60% of the diet in summer and autumn, but decreased to 21% (100N) and 37% (300N) in winter. Dead material in the diet was always higher at 100N. Pasture leaf percentage and leaf yield were the best individual predictors of leaf percentage in the diet. Diet P selected from pasture was reduced by the higher rate of N fertilizer in each season. Estimated P concentrations of the diet selected from pasture for summer, autumn and winter averaged 0·30, 0·38 and 0·28% DM for 100N and 0·19, 0·24 and 0·18% DM for 300N treatments, respectively.The response to P fertilizer was dependent on the rate of N fertilizer applied. The critical bicarbonate extractable soil P level for this soil type, below which pasture responses occurred, was 30 mg/kg at 300N. The critical level at 100N was not reached, but was <23 mg/kg P.


2017 ◽  
Vol 109 (5) ◽  
pp. 1880-1890 ◽  
Author(s):  
E. Martínez ◽  
A. Maresma ◽  
A. Biau ◽  
S. Cela ◽  
P. Berenguer ◽  
...  

1988 ◽  
Vol 106 (2) ◽  
pp. 253-261 ◽  
Author(s):  
A. Marchesini ◽  
L. Allievi ◽  
E. Comotti ◽  
A. Ferrari

1997 ◽  
Vol 129 (2) ◽  
pp. 219-231 ◽  
Author(s):  
T. M. DAVISON ◽  
W. N. ORR ◽  
V. DOOGAN ◽  
P. MOODY

The phosphorus fertilizer requirements and long term productivity of nitrogen-fertilized Gatton panic (Panicum maximum cv. Gatton) pastures, grazed by lactating dairy cows, were evaluated in a 7-year experiment. Cows grazed at 2·6 cows/ha on pastures that received annually 100 or 300 kg N/ha and each of 0, 22·5 or 45 kg P/ha. Cows received no energy supplements in years 1–3 and were offered molasses at 3·5 kg/day from year 4 to year 7. Cows grazed their experimental paddocks from the start of the wet season until they started to lose weight in the dry season.In years 6 and 7 there was significantly less green pasture and leaf on offer in 300N pastures at 0P than with 22·5P and 45P. This was reflected in a reduced milk yield by cows at 300N/0P in these two years. There was no influence of rate of P fertilizer at 100N on milk yield in any year. Lactation milk yields at 300N in years 6 and 7 averaged 3930, 4310 and 4610 kg/cow (P<0·05) for 0P, 22·5P and 45P, respectively. Nitrogen fertilizer increased milk yield in each year (P<0·01) except the first. Milk yields at 100N and 300N averaged 2860 and 3320 kg/cow respectively in years 1–3 and 3720 and 4290 kg/cow in years 4–7.The milk yield responses to P fertilizer were related to the greater amounts of pasture and green leaf on offer, which led to a higher proportion of leaf in the diet, and the response to P fertilizer was dependent on the rate of N fertilizer applied. Phosphorus intakes were estimated to be below that of published requirements for cows producing this quantity of milk. An annual model of P flow between plant, animal and soil pools demonstrated that at 100N/22·5P more P was returned to the soil as excreta (15·7 kg P/ha) than with 300N/22·5P (7·1 kg P/ha). The major pathway of return of P to the soil at 300N was through plant litter. Soil organic P was the largest, but least exploited, pool of phosphorus.This study has illustrated how the demand for phosphorus by the plant in grazed pastures is modified by the input of N fertilizer, is poorly predicted from plant analysis and published standards for animal requirements, and indicates that a response in milk production may be mediated through the effects of P on leaf growth and not on dietary P content.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0247931
Author(s):  
Vanessa Z. Longhini ◽  
Abmael S. Cardoso ◽  
Andressa S. Berça ◽  
Robert M. Boddey ◽  
Ricardo A. Reis ◽  
...  

Palisadegrass [Urochloa brizantha (Hochst. ex A. Rich.) R. D. Webster cv. Marandu] is widely used in Brazil and is typically managed with little or no N fertilizer, which often leads to pasture decline in the long-term. The current relationship between beef price and fertilizer cost in Brazil does not favor fertilizer use in pastures. Legume inclusion is an alternative to adding fertilizer N, but often legumes do not reach a significant proportion (> 30%) in pasture botanical composition. This study evaluated herbage responses to N inputs and pasture species composition, under intermittent stocking. Treatments included palisadegrass-forage peanut (Arachis pintoi Krapov. & W.C. Greg. cv. Amarillo) mixture (mixed), unfertilized palisadegrass (control), and palisadegrass fertilized with 150 kg N ha-1 yr-1 (fertilized). Treatments were applied over two rainy seasons with five growth cycle (GC) evaluations each season. Response variables included herbage biomass, herbage accumulation, morphological components, total aboveground N of forage peanut (TAGNFP), and contribution of biological N2 fixation (BNF). Herbage biomass was greater for fertilized palisadegrass [5850 kg dry matter (DM) ha-1] than for the palisadegrass-forage peanut mixture (3940 kg DM ha-1), while the unfertilized palisadegrass (4400 kg DM ha-1) did not differ from the mixed pasture. Nitrogen fertilizer increased leaf mass of palisadegrass (2490 kg DM ha-1) compared with the control and mixed treatments (1700 and 1310 kg DM ha-1, respectively). The contribution of BNF to the forage peanut ranged from 79 to 85% and 0.5 to 5.5 kg N ha-1 cycle-1. Overall, benefits from forage peanut were minimal because legume percentage was less than 10%, while N input in the system by N-fertilizer increased palisadegrass herbage biomass.


1989 ◽  
Vol 112 (3) ◽  
pp. 403-411 ◽  
Author(s):  
J. R. Holbrook ◽  
W. J. Ridgman

SummaryAn experiment in which all combinations of four rates of N fertilizer soon after sowing, four in early spring and nine in late spring were applied to the same plots of winter wheat for 6 years is described and the effects discussed.It was found that although the yield varied considerably from year to year the regime leading to greatest yield was fairly consistent. If the farmer had used the regime which gave the greatest average yield (0, 90, 180 kg N/ha in autumn, early spring and late spring, respectively) he would have averaged only 0·12 t/ha less than the maximum attainable each year.Application of N increased protein concentration in the grain more or less linearly but the latest application increased it most. Since the regime which gave greatest yield on average produced grain which qualified for bread-making premium from the protein point of view in all years except 1981, adopting the regime which gave maximum yield would reduce the potential maximum gross margin by only £30/ha.Analysis of the soil showed a reduction in pH down to 15 cm and of available P2O5 down to 10 cm.


Sign in / Sign up

Export Citation Format

Share Document