scholarly journals A Recirculating Hydroponic System for Studying Peanut (Arachis hypogaea L.)

HortScience ◽  
1998 ◽  
Vol 33 (4) ◽  
pp. 650-651 ◽  
Author(s):  
C.L. Mackowiak ◽  
R.M. Wheeler ◽  
G.W. Stutte ◽  
N.C. Yorio ◽  
L.M. Ruffe

Peanut (Arachis hypogaea L.) plants were grown hydroponically, using continuously recirculating nutrient solution. Two culture tray designs were tested; one tray design used only nutrient solution, while the other used a sphagnum-filled pod development compartment just beneath the cover and above the nutrient solution. Both trays were fitted with slotted covers to allow developing gynophores to reach the root zone. Peanut seed yields averaged 350 g·m-2 dry mass, regardless of tray design, suggesting that substrate is not required for hydroponic peanut production.

1978 ◽  
Vol 5 (1) ◽  
pp. 53-56 ◽  
Author(s):  
J. A. Bartz ◽  
A. J. Norden ◽  
J. C. LaPrade ◽  
T. J. DeMuynk

Abstract An assay of cured, hand-shelled seeds of various peanut genotypes for tolerance to members of the Aspergillus flavus group of fungi has been performed in Florida for the years 1971–1974. The assay involved exposing peanut seed at 20–30% moisture to conidia of A. parasiticus or A. flavus in petri plates and incubating at 25 C. After 1 week, the percentage of the seeds with sporulating colonies of the test fungus was determined. Typically, individual lines or cultivars were evaluated on the basis of the average of three plates. However, second or third assays of the same seed lots were done on 45 occasions during the 4 year period. More than 95% of these repeated assays yielded data similar to those from the original assay. However, different seed lots of the same line also were assayed and did not always yield similar results unless the dates of digging, methods of curing and location of the plantings were the same. Some shifts in susceptibility were quite extreme. One lot of stackpole cured ‘Altika’ resulted in 12% colonized seeds in the assay but 77% of a windrow-cured seed lot, dug on the same day from the same plot had colonies of the test fungi. No particular change in the harvesting procedure was consistently associated with increases or decreases in apparent susceptibility. Based on tests of all seed lots of 15 commonly grown cultivars during the years 1971–1974. ‘Florunner’ was the most tolerant cultivar and ‘Tifspan’ was the most susceptible.


2019 ◽  
Vol 20 (17) ◽  
pp. 4120 ◽  
Author(s):  
Kunkun Zhao ◽  
Ke Li ◽  
Longlong Ning ◽  
Jialin He ◽  
Xingli Ma ◽  
...  

Growth-regulating factors (GRFs) are plant-specific transcription factors that perform important functions in plant growth and development. Herein, we identified and characterised 24 AhGRF genes in peanut (Arachis hypogaea). AhGRF family genes were divided into six classes with OLQ and WRC domains. Transcriptome expression profile showed that more AhGRF genes, such as AhGRF5a gene, were at higher expression during pod development in Arachis monticola than cultivated species, especially at the pod rapid-expansion stage. AhGRF5a and AhGRF5b genes expressed at higher levels in pods than roots, leaves and stems tissues, existing in the difference between Arachis monticola and H8107. Exogenous GA3 application can activate AhGRF5a and AhGRF5b genes and H8107 line showed more positive response than Arachis monticola species. These results imply that these two AhGRF genes may be active during the peanut pod development.


1992 ◽  
Vol 19 (2) ◽  
pp. 108-110
Author(s):  
D. H. Carley ◽  
S. M. Fletcher ◽  
P. Zhang ◽  
H. Witt

Abstract In the 1980s exports of peanuts (Arachis hypogaea L.) from the United States ranged from 228,000 mt to 473,000 mt making up nearly 20% of the total U.S. production. The European Community was the largest importer of U. S. peanuts with Argentina and China the major U. S. competitors for peanut imports. Edible peanut prices quoted in Rotterdam are recognized as world reference prices in the peanut trade. From 1978 to 1990 monthly prices of U. S. 40/50 shelled peanuts in Rotterdam ranged from $600/mt to $2,100/mt. A change of $100/mt in the Rotterdam price results in an estimated change in the value of U. S. farmers' stock peanuts of $66/mt. Rotterdam prices are sensitive to monthly estimates of peanut production in the southeastern U. S. There is a critical southeast production threshold of about 1.0 mil mt, below which Rotterdam prices increase $125/mt for a decrease of 50,000 mt in production. Above the level of production, the price changed $51/mt for each 50,000 mt change in production. The Rotterdam price is an important barometer for domestic prices for additional peanuts produced by U. S. peanut farmers.


2010 ◽  
Vol 37 (2) ◽  
pp. 144-150 ◽  
Author(s):  
I. Ginzberg ◽  
A. Tubi ◽  
O. Buchshtab ◽  
S. Wininger ◽  
B. Ben-Dor ◽  
...  

Abstract Peanut (Arachis hypogaea L.) is a globally important legume crop that is utilized fresh, roasted, or pressed for oil products. A substantial market exists for in-shell peanuts, and shell color is an important factor affecting price — consumers favor bright yellow. Field observations have indicated that the type of soil in which the peanut pods develop can affect shell color and tint. Field and greenhouse experiments in which plants were grown in sandy soil while pods were allowed to develop in various tested soils verified this primary observation: sandy soils resulted in bright-yellow shells, dark soils (such as peat) resulted in a darker shell color, while loess soils resulted in intermediate shell colors. Incubation of peanut pods in saturated soil solutions or filtered soil extracts inferred the existence of two opposing processes that may affect shell color: adherence of water-soluble soil components to the shell surface, and the washing-off of shell material from this surface. Overhead irrigation with a reduced amount of water or watering with a subsurface drip system concealed at a depth of 25 cm resulted in brighter shell colors than applying the normal amount of water by overhead irrigation. These data suggest that reducing soil wetness in the pod-development zone may increase shell brightness. Field experiments also indicating that final shell color is determined towards the end of pod development, suggesting that soil wetness in the pod-development zone should be controlled during at least the last 4 weeks of growth, to maintain a low level of wetness.


2017 ◽  
Vol 38 (4Supl1) ◽  
pp. 2823
Author(s):  
Daniele Brandstetter Rodrigues ◽  
Adriane Marinho de Assis ◽  
Ricardo Tadeu Faria ◽  
Marcia Wullf Schuch ◽  
Roberta Marins Nogueira Peil

In Brazil, orchid cultivation has been increasing steadily over the last few years and contributing significantly to the economy. It has been reported that several vegetable crops and ornamentals have been successfully grown by soilless cultivation. The orchid Oncidium baueri Lindl. is grown on pot substrates. Nevertheless, hydroponics is an excellent alternative, especially for the production of cut flowers and bare root plants. The objective of this study was to evaluate the development of Oncidium baueri on two soilless systems: (a) pots containing Amafibra® coconut fiber, carbonized rice husk, and pine bark (1:1:1) irrigated with nutrient solution every 15 d; and (b) a nutrient film technique (NFT) hydroponic system irrigated with nutrient solution daily. Shoot height, pseudobulb diameter, and number of sprouts were evaluated monthly. The number of flowering plants, number of flowers, dry mass of shoots, and dry mass of roots were evaluated 11 months after onset of experiment. The pot cultivation system yielded more flowers and higher values for all vegetative parameters than the NFT hydroponic system.


2021 ◽  
Author(s):  
Apekshita Singh ◽  
Soom Nath Raina ◽  
Manisha Sharma ◽  
Manju Chaudhary ◽  
Suman Sharma ◽  
...  

Peanut (Arachis hypogaea L.) is an important grain legume crop of tropics and subtropics. It is increasingly being accepted as a functional food and protein extender in developing countries. The seed contains 36% to 54% oil, 16% to 36% protein, and 10% to 20% carbohydrates with high amounts of P, Mg, Ca, riboflavin, niacin, folic acid, vitamin E, resveratrol and amino acids. Seed contains 32 different proteins comprised of albumins and globulins. The two-globulin fractions, arachin and non-arachin, comprise approximately 87% of the peanut seed proteins. Peanut worldwide is mainly used for oil production, consumption as raw, roasted, baked products, peanut butter, peanut flour, extender in meat product formulations, confectionary and soups. Peanut proteins have many properties such as good solubility, foaming, water/oil binding, emulsification that make them useful in various food products. Very limited studies have been carried out in peanut functional properties, which has been reviewed in the present article. Adequate modifications can be done in protein functionality that are influenced by pH, temperature, pressure etc. However, some individuals develop severe IgE-mediated allergies to peanut seed proteins. Thus, methods to improve nutrition and reduce allergenicity have also been discussed. Within the last decade, manipulations have been done to alter peanut chemistry and improve nutritional quality of peanuts and peanut products. Hence, improved comprehensive understanding of functional properties and nutritional chemistry of peanut proteins can generate better source of food grain to meet nutritional requirement of growing population. In the present review, composition of peanut seed proteins, functional properties, nutritional components and nutraceutical value have been discussed with respect to beneficial aspects to health, reducing hunger and usage in food end products.


Sign in / Sign up

Export Citation Format

Share Document