scholarly journals Surfactants Improve the Response of Grapevines to Hydrogen Cyanamide

HortScience ◽  
1998 ◽  
Vol 33 (5) ◽  
pp. 857-859 ◽  
Author(s):  
N.K. Dokoozlian ◽  
N.C. Ebisuda ◽  
R.A. Neja

The effects of surfactants on the efficacy of hydrogen cyanamide (H2CN2) applied to `Perlette' grapevines (Vitis vinifera L.) grown in the Coachella Valley of California were examined in 1994 and 1995. Vines were pruned in mid-December in both years and treatments applied at 1000 L·ha-1 the following day to dormant spurs and cordons using a hand-held spray wand. In 1994, H2 CN2 was applied at 0.5%, 1%, or 2% by volume in combination with 0%, 0.5%, 1%, 2%, or 3% by volume of the amine-based surfactant Armobreak. In 1995, H2CN2 was applied at 0.5%, 1%, or 2% by volume in combination with Armobreak at 0% or 2% by volume. In 1994, budbreak rate was highly dependent upon H2CN2 concentration when 0 % to 1 % Armobreak was used; budbreak was generally most rapid for vines treated with 2% H2CN2 and slowest for vines treated with 0.5% H2CN2. When 2% or 3% Armobreak was used, however, little effect of H2CN2 concentration was observed. Results were similar in 1995, but the budbreak of vines treated with 2% H2CN2 + 2% Armobreak lagged behind that of vines treated with 1% H2CN2 + 2% Armobreak. The number of days after treatment required for 70% budbreak generally declined as the concentrations of H2CN2 and Armobreak were increased. A separate experiment conducted in 1995 revealed that several surfactants varying in chemical composition, Armobreak, Activator 90 and Agridex, had similar effects on H2CN2 efficacy. The results indicate that the addition of surfactants to H2CN2 solutions can significantly reduce the amount of active ingredient necessary for maximum efficacy on grapevines. Chemical names used: hydroxypolyoxyethylene polyoxypropylene ethyl alkylamine (Armobreak); alkyl polyoxyethylene ether (Activator 90); paraffin petroleum oil (Agridex).

1999 ◽  
Vol 9 (1) ◽  
pp. 129b
Author(s):  
N.K. Dokoozlian ◽  
N.C. Ebisuda ◽  
R.A. Neja

The effects of surfactants on the efficacy of hydrogen cyanamide (H2CN2) applied to `Perlette' grapevines (Vitis vinifera L.) grown in the Coachella Valley of California were examined in 1994 and 1995. Vines were pruned in mid-December in both years and treatments applied at 1000 L·ha-1 the following day to dormant spurs and cordons using a hand-held spray wand. In 1994, H2CN2 was applied at 0.5%, 1%, or 2% by volume in combination with 0%, 0.5%, 1%, 2%, or 3% by volume of the amine-based surfactant Armobreak. In 1995, H2CN2 was applied at 0.5%, 1%, or 2% by volume in combination with Armobreak at 0% or 2% by volume. In 1994, budbreak rate was highly dependent upon H2CN2 concentration when 0% to 1% Armobreak was used; budbreak was generally most rapid for vines treated with 2% H2CN2 and slowest for vines treated with 0.5% H2CN2. When 2% or 3% Armobreak was used, however, little effect of H2CN2 concentration was observed. Results were similar in 1995, but the budbreak of vines treated with 2% H2CN2 + 2% Armobreak lagged behind that of vines treated with 1% H2CN2 + 2% Armobreak. The number of days after treatment required for 70% bud-break generally declined as the concentrations of H2CN2 and Armobreak were increased. A separate experiment conducted in 1995 revealed that several surfactants varying in chemical composition, Armobreak, Activator 90 and Agridex, had similar effects on H2CN2 efficacy. The results indicate that the addition of surfactants to H2CN2 solutions can significantly reduce the amount of active ingredient necessary for maximum efficacy on grapevines. Chemical names used: hydroxypolyoxyethylene polyoxypropylene ethyl alkylamine (Armobreak); alkyl polyoxyethylene ether (Activator 90); paraffin petroleum oil (Agridex).


HortScience ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 575b-575
Author(s):  
R.A. Neja ◽  
N.K. Dokoozlian ◽  
N.C. Ebisuda

Field experiments conducted in 1994 (low-chill winter) and 1995 (high-chill winter) examined the effects of surfactants on the efficacy of hydrogen cyanamide (H2CN2) applied to `Perlette' grapevines (Vitis vinifera L.) in the Coachella Valley of California. In 1994, when surfactants were not used, vines treated with 1% and 2% H2CN2 exhibited similar rates of budbreak and grew more rapidly than vines treated with 0.5% H2CN2. When 1% or more of the surfactant Armobreak was used, budbreak was generally similar among all H2CN2 concentrations. The number of days after treatment required for 70% budbreak declined as H2CN2 and Armobreak concentrations were increased. Results were similar in 1995, however, budbreak was inhibited when vines were treated with 2% H2CN2 + 2% Armobreak. A separate experiment conducted in 1995 revealed that two other surfactants, Activator 90 and Agridex, had similar effects on the efficacy of H2CN2 as Armobreak. The results indicate that, when 2% surfactant is used, the standard commercial H2CN2 concentration used in California may be reduced 75% while maintaining treatment efficacy. Chemical names used: hydroxypolyoxyethylene polyoxypropylene ethyl alkylamine (Armobreak); alkyl polyoxyetheylene ether (Activator 90); paraffin petroleum oil (Agridex).


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1192
Author(s):  
Natalia Gutiérrez ◽  
Leyre López-de-Silanes ◽  
Carlos Escott ◽  
Iris Loira ◽  
Juan Manuel del Fresno ◽  
...  

Canopy management practices in vineyards, such as sprawling systems and shoot trimming, can change the accumulation of metabolites in grapes. The use of elicitors of biological origin on grapevines of Vitis vinifera red grape varieties may also modulate the chemical composition of the berries. These modifications are often observed in the accumulation of phenolic compounds, including pigments. Both technical approaches are alternatives involved in minimizing the effects of global climate change in warm areas. The increase of temperature related to climate change accelerates the accumulation of sugars, but produces unbalanced grapes. This work establishes the use of button sensors to monitor the climate changes occurring at grape cluster level. Together with climate monitoring, conventional instrumental analytical techniques are used to follow up the chemical composition and the phenolic fraction of grapes in four different production areas in Spain. The effect of either treatment seems variable and to be affected by external factors besides the treatment itself and the climate conditions. While there is a fine effect that correlates with the use of elicitors in varieties like Merlot and Tempranillo, there is minimal improvement observed in Tintilla de Rota. The total phenolic index increases were between 2.3% and 11.8% in the first two parcels. The same happened with the vineyard’s canopy management systems, with increased pigment accumulation and the total phenolic index rising (37.7% to 68.7%) after applying intense shoot trimming, or a variation in sugar concentrations when using sprawl conduction. This study aims to provide viticulturists and oenologists in particular, and farmers in general, with data on the field regarding the use of alternative sustainable practices in the cultivation of grapes. The techniques used involved 100% natural products without adjuvants. The benefits obtained from applying some of these practices would be to produce technically mature grapes despite climate changes, and the elaboration of more balanced wines.


2019 ◽  
Vol 10 (4) ◽  
pp. 1856-1869 ◽  
Author(s):  
Joana R. Costa ◽  
Manuela Amorim ◽  
Ana Vilas-Boas ◽  
Renata V. Tonon ◽  
Lourdes M. C. Cabral ◽  
...  

Grape pomace (GP) is a major byproduct worldwide, and it is well known for its bioactive compounds, such as fibers and phenolic compounds, that are popular for their impact upon human health, including in gastrointestinal health.


2019 ◽  
Vol 286 ◽  
pp. 686-695 ◽  
Author(s):  
Diandra Pintać ◽  
Dragana Četojević-Simin ◽  
Sanja Berežni ◽  
Dejan Orčić ◽  
Neda Mimica-Dukić ◽  
...  

HortScience ◽  
2000 ◽  
Vol 35 (2) ◽  
pp. 226-229 ◽  
Author(s):  
U. Hartmond ◽  
J.D. Whitney ◽  
J.K. Burns ◽  
W.J. Kender

Two field studies were conducted to evaluate the effect of metsulfuron-methyl and 5-chloro-3-methyl-4-nitro-1H-pyrazole (CMN-pyrazole) on abscission of `Valencia' orange [Citrus sinensis (L.) Osbeck] during the 3-month harvest season. Solutions of metsulfuron-methyl at 0.5, 1, and 2 mg·L-1 active ingredient (a.i.) were applied at 10-day intervals beginning on 13 Feb. and ending 18 May 1998. Early in the harvest season, 1 or 2 mg·L-1 metsulfuron-methyl significantly reduced fruit detachment force (FDF) 14 days after application. Metsulfuron-methyl was less effective during a 4- to 6-week period following bloom (“less-responsive period”). After this period, metsulfuron-methyl regained the ability to loosen fruit. Applications of 2 mg·L-1 a.i. were more effective than 1 mg·L-1 in reducing FDF and causing leaf drop, but 0.5 mg·L-1 a.i. had little or no effect on FDF. Flowers and leaflets on developing shoots and young fruit completely abscised with 1 and 2 mg·L-1 a.i. Defoliation and twig dieback was extensive at all concentrations and spray dates, eliminating metsulfuron-methyl as a commercially viable abscission agent for citrus. In a separate experiment CMN-pyrazole at 50 and 100 mg·L-1 a.i. and metsulfuronmethyl at 0.5 mg·L-1 a.i. were applied to `Valencia' trees to determine fruit removal with a trunk shake and catch harvesting system. Application of both abscission materials before and after the “less-responsive period” resulted in a 10% to 12% increase in fruit removal when compared to control trees. Less than a 35% reduction in FDF was sufficient to significantly increase fruit removal. Only 100 mg·L-1 a.i. CMN-pyrazole significantly increased fruit removal when applied during the “less-responsive period.” Chemical names used: Methyl-2-(((((4-Methoxy-6-Methyl-1,3,5-Triazin-2-yl)-Amino)Carbonyl) Amino)Sulfonyl)Benzene (Metsulfuron-methyl); 5-Chloro-3-methyl-4-nitro-1-H-pyrazole (CMN-pyrazole).


2017 ◽  
Vol 70 ◽  
pp. 329
Author(s):  
C. Molloy ◽  
M. Guy ◽  
A. Wells ◽  
S. McKennie

Advance Gold (AG) is a new agricultural compounds & veterinary medicines (ACVM)-registered budbreak enhancer for Gold3 kiwifruit. It contains salicylic acid as the active ingredient, and is used in conjunction with nitrogen and calcium salts. Gold3 kiwifruit blocks in the Bay of Plenty up to 1 ha in area were sprayed using convention air blast sprayers fitted with air inclusion nozzles in August of 2015 and 2016, and monitored for budbreak, flowering and components of yield. Following good winter chill in 2015, a block at near sea level produced about 2 king flowers per winter bud (KF/WB) without AG treatment and about 3 KF/WB following AG treatment. A site at 93 m above sea level produced a larger number of flowers unassisted and a modest increase following AG treatment. Minimal winter chill in 2016 resulted in very low flower numbers in untreated canes at both sites, with AG treatment producing an increase of approximately 1 KF/WB. The current budbreaker used by the kiwifruit industry, hydrogen cyanamide, produced comparable increases in flower numbers to AG in the four trials but gave a larger proportion of “star triples”, tightly clustered triple flowers. Components of yield are presented.


2019 ◽  
Vol 278 ◽  
pp. 636-643 ◽  
Author(s):  
Mar Vilanova ◽  
María Fandiño ◽  
Samuel Frutos-Puerto ◽  
Javier J. Cancela

Sign in / Sign up

Export Citation Format

Share Document