scholarly journals The Effect of Elicitors and Canopy Management in the Chemical Composition of Vitis vinifera Red Varieties in Warm and Hot Areas in Spain

Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1192
Author(s):  
Natalia Gutiérrez ◽  
Leyre López-de-Silanes ◽  
Carlos Escott ◽  
Iris Loira ◽  
Juan Manuel del Fresno ◽  
...  

Canopy management practices in vineyards, such as sprawling systems and shoot trimming, can change the accumulation of metabolites in grapes. The use of elicitors of biological origin on grapevines of Vitis vinifera red grape varieties may also modulate the chemical composition of the berries. These modifications are often observed in the accumulation of phenolic compounds, including pigments. Both technical approaches are alternatives involved in minimizing the effects of global climate change in warm areas. The increase of temperature related to climate change accelerates the accumulation of sugars, but produces unbalanced grapes. This work establishes the use of button sensors to monitor the climate changes occurring at grape cluster level. Together with climate monitoring, conventional instrumental analytical techniques are used to follow up the chemical composition and the phenolic fraction of grapes in four different production areas in Spain. The effect of either treatment seems variable and to be affected by external factors besides the treatment itself and the climate conditions. While there is a fine effect that correlates with the use of elicitors in varieties like Merlot and Tempranillo, there is minimal improvement observed in Tintilla de Rota. The total phenolic index increases were between 2.3% and 11.8% in the first two parcels. The same happened with the vineyard’s canopy management systems, with increased pigment accumulation and the total phenolic index rising (37.7% to 68.7%) after applying intense shoot trimming, or a variation in sugar concentrations when using sprawl conduction. This study aims to provide viticulturists and oenologists in particular, and farmers in general, with data on the field regarding the use of alternative sustainable practices in the cultivation of grapes. The techniques used involved 100% natural products without adjuvants. The benefits obtained from applying some of these practices would be to produce technically mature grapes despite climate changes, and the elaboration of more balanced wines.

2018 ◽  
Vol 69 (8) ◽  
pp. 1976-1979
Author(s):  
Ioana Asofiei ◽  
Ioan Calinescu ◽  
Adina Ionuta Gavrila ◽  
Daniel Ighigeanu ◽  
Diana Martin

It was designed and built a laboratory experimental installation (LEI) for the microwave pretreatment of vegetable materials. To study the influence of microwave pretreatment on the total phenolic content (TPC), a conventional extraction of polyphenols from treated and untreated fresh sea buckthorn leaves was performed. For short extraction times, the amount of phenolic compounds was higher for the extracts obtained from treated leaves, but a long pretreatment time (28 s) led to a decrease in TPC. The qualitative analysis showed that the chemical composition is not affected by the microwave pretreatment.


The Holocene ◽  
2021 ◽  
pp. 095968362110116
Author(s):  
Maegen L Rochner ◽  
Karen J Heeter ◽  
Grant L Harley ◽  
Matthew F Bekker ◽  
Sally P Horn

Paleoclimate reconstructions for the western US show spatial variability in the timing, duration, and magnitude of climate changes within the Medieval Climate Anomaly (MCA, ca. 900–1350 CE) and Little Ice Age (LIA, ca. 1350–1850 CE), indicating that additional data are needed to more completely characterize late-Holocene climate change in the region. Here, we use dendrochronology to investigate how climate changes during the MCA and LIA affected a treeline, whitebark pine ( Pinus albicaulis Engelm.) ecosystem in the Greater Yellowstone Ecoregion (GYE). We present two new millennial-length tree-ring chronologies and multiple lines of tree-ring evidence from living and remnant whitebark pine and Engelmann spruce ( Picea engelmannii Parry ex. Engelm.) trees, including patterns of establishment and mortality; changes in tree growth; frost rings; and blue-intensity-based, reconstructed summer temperatures, to highlight the terminus of the LIA as one of the coldest periods of the last millennium for the GYE. Patterns of tree establishment and mortality indicate conditions favorable to recruitment during the latter half of the MCA and climate-induced mortality of trees during the middle-to-late LIA. These patterns correspond with decreased growth, frost damage, and reconstructed cooler temperature anomalies for the 1800–1850 CE period. Results provide important insight into how past climate change affected important GYE ecosystems and highlight the value of using multiple lines of proxy evidence, along with climate reconstructions of high spatial resolution, to better describe spatial and temporal variability in MCA and LIA climate and the ecological influence of climate change.


2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Nabaz R. Khwarahm

Abstract Background The oak tree (Quercus aegilops) comprises ~ 70% of the oak forests in the Kurdistan Region of Iraq (KRI). Besides its ecological importance as the residence for various endemic and migratory species, Q. aegilops forest also has socio-economic values—for example, as fodder for livestock, building material, medicine, charcoal, and firewood. In the KRI, Q. aegilops has been degrading due to anthropogenic threats (e.g., shifting cultivation, land use/land cover changes, civil war, and inadequate forest management policy) and these threats could increase as climate changes. In the KRI and Iraq as a whole, information on current and potential future geographical distributions of Q. aegilops is minimal or not existent. The objectives of this study were to (i) predict the current and future habitat suitability distributions of the species in relation to environmental variables and future climate change scenarios (Representative Concentration Pathway (RCP) 2.6 2070 and RCP8.5 2070); and (ii) determine the most important environmental variables controlling the distribution of the species in the KRI. The objectives were achieved by using the MaxEnt (maximum entropy) algorithm, available records of Q. aegilops, and environmental variables. Results The model demonstrated that, under the RCP2.6 2070 and RCP8.5 2070 climate change scenarios, the distribution ranges of Q. aegilops would be reduced by 3.6% (1849.7 km2) and 3.16% (1627.1 km2), respectively. By contrast, the species ranges would expand by 1.5% (777.0 km2) and 1.7% (848.0 km2), respectively. The distribution of the species was mainly controlled by annual precipitation. Under future climate change scenarios, the centroid of the distribution would shift toward higher altitudes. Conclusions The results suggest (i) a significant suitable habitat range of the species will be lost in the KRI due to climate change by 2070 and (ii) the preference of the species for cooler areas (high altitude) with high annual precipitation. Conservation actions should focus on the mountainous areas (e.g., by establishment of national parks and protected areas) of the KRI as climate changes. These findings provide useful benchmarking guidance for the future investigation of the ecology of the oak forest, and the categorical current and potential habitat suitability maps can effectively be used to improve biodiversity conservation plans and management actions in the KRI and Iraq as a whole.


Proceedings ◽  
2020 ◽  
Vol 70 (1) ◽  
pp. 100
Author(s):  
Minerva C. García-Vargas ◽  
María del Mar Contreras ◽  
Irene Gómez-Cruz ◽  
Juan Miguel Romero-García ◽  
Eulogio Castro

Avocado has become fashionable due to its great organoleptic and nutritional properties. It is consumed as a fresh product and it is also processed to obtain salad oil and guacamole. In all cases, the only usable portion is the pulp. Therefore, to be a more sustainable and profitable agribusiness, it is important to recognize which compounds from the peel and the stone waste can be converted into valuable bio-products. Therefore, their chemical composition was determined according to the National Renewable Energy Laboratory, the total phenolic content by the Folin-Ciocalteu method and the antioxidant properties by the FRAP and TEAC assays. The main components of the peel and stone were acid-insoluble lignin (35.0% and 15.3%, respectively), polymeric sugars (23.6% and 43.9%, respectively), and the aqueous extractives (15.5% and 16.9%, respectively). Both biomasses contain lipids and protein, but a minor proportion (<6%). The valorization of lignin and sugars is of interest given the high content; stones are a rich source of glucose (93.2% of the polymeric fraction), which could be used to obtain biofuels or derivatives of interest. The extractive fraction of the peel contained the highest number of phenolic compounds (4.7 g/100 g biomass), mainly concentrated in the aqueous fraction (i.e., 87%) compared to the ethanol one, which was subsequently extracted. It correlated with major antioxidant activity and, therefore, the peel can be applied to obtain antioxidants and water can be used as an environmentally friendly extraction solvent.


Helia ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Kateryna Vasylkovska ◽  
Olha Andriienko ◽  
Oleksii Vasylkovskyi ◽  
Andrii Andriienko ◽  
Popov Volodymyr ◽  
...  

Abstract The analysis of the production and yield of sunflower seeds in Ukraine for the period from 2000 to 2019 was conducted in the article. The comparative analysis of the gross harvest of sunflower seeds and the export of sunflower oil for the years under research was carried out. The dependence of exports on gross harvest was revealed and its share was calculated. It was determined that the export of sunflower oil has increased over the years under research, which indicates a significant Ukraine’s export potential. It was found that the increase in the share of exports by 15.9% was made possible by a qualitative change in yield, that was ensured by the changes in the cultivation technology and by the selection of sunflower hybrids that are better adapted to climate changes. The recommendations for further improvement of cultivation technology in connection with climate change in order to further increase yields and the export potential of Ukraine were given.


Author(s):  
Ross H Martin ◽  
Joshua B Hodge ◽  
Clayton J Whitesides

E.P. Meinecke, a noted plant pathologist and staunch supporter of conservation, authored an influential article about the impacts of tourism on redwood trees. In the Effect of Excessive Tourist Travel on the California Redwood Parks, published in 1929, Meinecke found that soil compaction by tourists had a negative impact on tree roots and his recommendations for amelioration were both logical and laced with philosophical ideals. We revisit that report with a modern perspective by reviewing his findings and suggestions, and by comparing his ideas with modern research and tourism management practices. One of Meinecke’s greatest concerns was the advent of the automobile and its ability to bring more people to redwood groves. We take that concern to the next logical step and discuss potential impacts of climate change on redwood trees.


Foods ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1579
Author(s):  
Mariam Sardiñas-Valdés ◽  
Hugo Sergio García-Galindo ◽  
Alfonso Juventino Chay-Canul ◽  
José Rodolfo Velázquez-Martínez ◽  
Josafat Alberto Hernández-Becerra ◽  
...  

The influence of nano-emulsified curcumin (NEC) added to the hair sheep milk, prior to cheese-making, on the chemical composition, lipolysis, and proteolysis of manchego-style cheeses were evaluated throughout 80 days of ripening. The addition of NEC to the milk resulted in cheeses with the same moisture content (42.23%), total protein (23.16%), and water activity (0.969) (p > 0.05). However, it increased the fat and ash levels from 26.82% and 3.64% in B 10 ppm to 30.08% and 3.85% in C 10 ppm, respectively, at the end of the ripening (p < 0.05). The total phenolic content and antioxidant activity of experimental cheeses increased during ripening, and the fatty acid groups showed significant changes occurred to a greater extent in the first days of ripening (p < 0.05). The lipolysis increased consistently in all cheeses until day 40 of ripening, to decrease at the end, while proteolysis increased during all ripening time in all samples (p < 0.05); the addition of NEC did not alter the primary proteolysis of manchego-style cheeses, but it modified secondary proteolysis and lipolysis (p < 0.05). Principal component analysis was useful for discriminating cheeses according to their chemical composition and classified into four groups according to their ripening time. This research highlights the potential of CNE to fortify dairy foods to enhance their functionality.


Author(s):  
Hyun Min Sung ◽  
Jisun Kim ◽  
Sungbo Shim ◽  
Jeong-byn Seo ◽  
Sang-Hoon Kwon ◽  
...  

AbstractThe National Institute of Meteorological Sciences-Korea Meteorological Administration (NIMS-KMA) has participated in the Coupled Model Inter-comparison Project (CMIP) and provided long-term simulations using the coupled climate model. The NIMS-KMA produces new future projections using the ensemble mean of KMA Advanced Community Earth system model (K-ACE) and UK Earth System Model version1 (UKESM1) simulations to provide scientific information of future climate changes. In this study, we analyze four experiments those conducted following the new shared socioeconomic pathway (SSP) based scenarios to examine projected climate change in the twenty-first century. Present day (PD) simulations show high performance skill in both climate mean and variability, which provide a reliability of the climate models and reduces the uncertainty in response to future forcing. In future projections, global temperature increases from 1.92 °C to 5.20 °C relative to the PD level (1995–2014). Global mean precipitation increases from 5.1% to 10.1% and sea ice extent decreases from 19% to 62% in the Arctic and from 18% to 54% in the Antarctic. In addition, climate changes are accelerating toward the late twenty-first century. Our CMIP6 simulations are released to the public through the Earth System Grid Federation (ESGF) international data sharing portal and are used to support the establishment of the national adaptation plan for climate change in South Korea.


Sign in / Sign up

Export Citation Format

Share Document