scholarly journals 001 Establishment of Methods in Evaluating the Susceptibility of Chinese Cabbage (Brassica campestris spp.) to Soft Rot Disease by Erwinia

HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 440-441
Author(s):  
Won Jun ◽  
Soo-Seong Lee ◽  
Jongkee Kim

Three inoculation methods, including cutting of a leaf, drenching, and point inoculation, were compared in an effort to screen the susceptibility of Chinese cabbage to soft rot disease caused by Erwinia carotovora subsp. carotovora. Three- to 4-week-old seedlings from 10 lines of cabbage with 16-h-old bacterial culture were routinely used. Inoculated seedlings were kept at 25.0 ± 10.0 °C for 48 h with saturated water vapor using a plastic tunnel in a greenhouse. Sixty-day-old mature plants were produced and inoculated in a greenhouse. Severity of symptoms, which were observed from percentage of plant infected was scored as from 1 to 9, representing resistant to susceptible, respectively. The correlation between seedlings and mature plants from ten lines was evaluated among the three different inoculation methods. Point inoculation gave the most significant correlation (r = 0.843, P < 0.05) between seedlings and mature plants. A good correlation was also observed between point inoculation of seedlings and drenching of mature plants (r = 0.609, P < 0.05). Cutting of a leaf of seedlings was also correlated with point inoculation of mature plants (r = 0.609, P < 0.05). This method provides the advantage of being able to keep the experimental plant alive, as only one leaf is detached. The point inoculation method is simple and relatively sensitive, so it could be used for large-scale screening for this bacterial soft rot disease. From three different evaluation assays, it was concluded that the breeding lines, C3-28, C3-29 from Cornell Univ. (Geneva, N.Y.) and the cultivar Kweonsim319 were relatively resistant to bacterial soft rot, while the Cornell breeding line CC-25 and the `Rang-no' cultivar were relatively susceptible.

Agrikultura ◽  
2016 ◽  
Vol 27 (3) ◽  
Author(s):  
Noor Istifadah ◽  
Muhamad Salman Umar ◽  
Sudarjat Sudarjat ◽  
Luciana Djaya

ABSTRACTThe abilities of endophytic bacteria from potato roots and tubers to suppress soft rot disease (Erwinia carotovora pv. carotovora) in potato tuberSoft rot disease caused by Erwinia carotovora pv. carotovora is one of limiting factors in cultivation and post harvest of potato. The eco-friendly control measure that can be developed for controlling the diseases is biological control. Microbes that are potential as biological control agents include endophytic bacteria. This paper discussed the results of study examining the potential of endophytic bacteria isolated from roots and tubers of potato to inhibit the growth of E. carotovora pv. carotovora in vitro and suppress soft rot disease in potato tuber. The results showed that among 24 isolates examined, four isolates of endophytic bacteria (one isolate from potato tuber and three isolates from potato roots) inhibited the growth of E. carotovora pv. carotovora in vitro with inhibition zone 3.5-6.8 mm. In the in vivo test, the isolates inhibited the soft rot disease in potato tuber by 71.5-86.4%. The isolate that tended to show relatively better inhibition in vitro and in vivo was isolate from potato tuber which is CK U3 (Lysinibacillus sp.)Keywords: Biological control, Endophytic bacteria, Post-harvest, Potato, Soft rot diseaseABSTRAKPenyakit busuk lunak yang disebabkan bakteri Erwinia carotovora pv. carotovora, merupakan salah satu kendala dalam budidaya dan pascapanen kentang. Cara pengendalian ramah lingkungan yang dapat dikembangkan untuk menekan penyakit tersebut adalah pengendalian biologi. Kelompok mikroba yang berpotensi sebagi agens pengendali biologi adalah bakteri endofit. Artikel ini mendiskusikan potensi isolat bakteri endofit yang berasal dari ubi dan akar kentang untuk menghambat pertumbuhan bakteri E. carotovora pv. carotovora secara in vitro dan menekan perkembangan penyakit busuk lunak pada ubi kentang. Hasil percobaan menunjukkan bahwa diantara 24 isolat bakteri yang diuji, terdapat empat isolat bakteri endofit (satu isolat dari ubi kentang dan tiga isolat dari akar kentang) yang dapat menghambat pertumbuhan bakteri E. carotovora pv. carotovora secara in vitro dengan zona penghambatan sebesar 3,5-6,8 mm. Pada pengujian secara in vivo, isolat-isolat tersebut dapat menekan perkembangan penyakit busuk lunak pada ubi kentang sebesar 71,5-86,4%. Isolat yang cenderung menunjukkan penghambatan relatif lebih baik secara in vitro dan in vivo adalah isolat bakteri endofit asal ubi kentang yaitu isolat CK U3 (Lysinibacillus sp.).Kata Kunci: Pengendalian biologi, Bakteri endofit, Pascapanen, Kentang, Penyakit busuk basah


2020 ◽  
Vol 8 (5) ◽  
pp. 697 ◽  
Author(s):  
Jieling Li ◽  
Ming Hu ◽  
Yang Xue ◽  
Xia Chen ◽  
Guangtao Lu ◽  
...  

Dickeya zeae is the causal agent of bacterial soft rot disease, with a wide range of hosts all over the world. At present, chemical agents, especially agricultural antibiotics, are commonly used in the prevention and control of bacterial soft rot, causing the emergence of resistant pathogens and therefore increasing the difficulty of disease prevention and control. This study aims to provide a safer and more effective biocontrol method for soft rot disease caused by D. zeae. The spot-on-lawn assay was used to screen antagonistic bacteria, and three strains including SC3, SC11 and 3-10 revealed strong antagonistic effects and were identified as Pseudomonas fluorescens, P. parafulva and Bacillus velezensis, respectively, using multi-locus sequence analysis (MLSA) based on the sequences of 16S rRNA and other housekeeping genes. In vitro antimicrobial activity showed that two Pseudomonas strains SC3 and SC11 were only antagonistic to some pathogenic bacteria, while strain 3-10 had broad-spectrum antimicrobial activity on both pathogenic bacteria and fungi. Evaluation of control efficacy in greenhouse trials showed that they all restrained the occurrence and development of soft rot disease caused by D. zeae MS2 or EC1. Among them, strain SC3 had the most impressive biocontrol efficacy on alleviating the soft rot symptoms on both monocotyledonous and dicotyledonous hosts, and strain 3-10 additionally reduced the occurrence of banana wilt disease caused by Fusarium oxysporum f. sp. cubensis. This is the first report of P. fluorescens, P. parafulva and B. velezensis as potential bio-reagents on controlling soft rot disease caused by D. zeae.


1969 ◽  
Vol 74 (1) ◽  
pp. 83-92
Author(s):  
Amelia Cortés-Monllor

The bacterium Erwinia carotovora pv. carotovora (Jones) was identified from bacterial isolates from decaying material of tobacco, tomato, tanier, head lettuce, cabbage, Dracaena spp, Pothos spp, and calla lily as the causal agent of soft rot disease. Physiological characteristics, biochemical reactions and antibiotic response were similar among strains. The ability of the isolates to produce soft rot symptoms on healthy plants when artificially inoculated was demonstrated by pathogenicity tests.


Plant Disease ◽  
2020 ◽  
Vol 104 (5) ◽  
pp. 1536-1536
Author(s):  
Guadalupe Reyes-García ◽  
Santo Ángel Ortega-Acosta ◽  
Francisco Palemón-Alberto ◽  
Yanet Romero Ramírez ◽  
Jeiry Toribio-Jiménez ◽  
...  

2020 ◽  
Vol 158 (3) ◽  
pp. 773-780
Author(s):  
A. Balamurugan ◽  
A. Kumar ◽  
K. Sakthivel ◽  
M. Ashajyothi ◽  
Kuleshwar Prasad Sahu ◽  
...  

2009 ◽  
Vol 28 (10) ◽  
pp. 1581-1591 ◽  
Author(s):  
Enkhchimeg Vanjildorj ◽  
Seo Young Song ◽  
Zhi Hong Yang ◽  
Jae Eul Choi ◽  
Yoo Sun Noh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document