scholarly journals 090 Pollen Viability in Inland Saltgrass

HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 457A-457
Author(s):  
Scott Reid ◽  
Judy Harrington ◽  
Harrison Hughes

Distichlis spicata var. stricta (Torrey) Beetle is a native grass that tolerates salt, high pH, and some heavy metals. It has been proposed for use in several challenging environments, including mine spoils and salt-impacted areas of golf courses. But, its widespread use has been hindered by several factors, one of which is poor seed set. Because chromosome numbers are variable and some genotypes are aneuploids, there was concern that pollen viability in some genotypes was low. Pollen from several genotypes failed to germinate in vitro on four artificial media prepared with various levels of osmoticum. However, hand pollination in vivo resulted in profuse pollen germination for all genotypes tested. Germination on pollinated stigmas was observed at intervals beginning 2 h after pollination with a fluorescence microscope using aniline blue and acridine orange stains and in bright field using toluidine-O stain. Very young stigmas seemed unreceptive and, while pollen would germinate, the pollen tubes would not grow down through the style. On receptive stigmas, many pollen tubes grew down toward the egg and some reached it within 24 h. There was no evidence of impaired fertility. Aniline blue was the best method for observing pollen tube growth through the style, although toluidine-O was adequate for observing germination on the stigmatic surface.

2000 ◽  
Vol 125 (2) ◽  
pp. 265-270 ◽  
Author(s):  
A.M.S. Nyomora ◽  
P.H. Brown ◽  
K. Pinney ◽  
V.S. Polito

The effect of boron (B) on in vivo and in vitro development of almond [Prunus dulcis (Mill.) D.A. Webb (syn. P. amygdalus Batsch)] pollen and pollen tubes and the resultant effect on fruit set was studied in mature trees. The cultivars Mono (pistil donor) and Butte (pollinizer) in an orchard with low soil B in Fresno, California were sprayed with B at 0, 0.8, 1.7, or 2.5 kg·ha-1 during Fall 1993. Pollen viability as indicated by the fluorescein diacetate method (FDA) was >85% and was not affected by field-applied B, however, in vivo pollen germination and tube growth were enhanced by foliar-applied B. More effect of applied B on in vivo growth appeared as pollen tubes progressed toward the ovary. For in vitro germination, foliar-applied B reduced bursting of tubes, and addition of B to the culture media significantly increased pollen germination and pollen tube growth.


Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2395
Author(s):  
Natalia Miler ◽  
Anita Wozny

Among many challenges in chrysanthemum cross-breeding, the access to viable pollen for hybridization of cultivars distant in location and different in flowering time is required. Low pollen viability along with incompatibility are mainly responsible for low seed set in modern chrysanthemum cultivars. The aim of the study was to test various temperatures and periods of pollen storage of Chrysanthemum × morifolium in order to elaborate the method of chrysanthemum pollen preservation for cross-breeding purposes. In the first experiment, in vitro pollen germination of four cultivars was investigated following storage at 20 °C, 4 °C, −20 °C, and −80 °C, for one, four, and eight weeks. The second experiment focused on in vivo seed set after one week pollen treatment with 20 °C, 4 °C, −20 °C, and −80 °C (three pollen donor cultivars tested). Pollen in vitro germinability, as well as seed set efficiency, was generally low and cultivar dependent. Independent of the period of storage, stored pollen germinability was lower (5.30–6.63%) than fresh pollen (8.15%). Incubation of pollen in −80 °C significantly increased pollen germinability (9.80%), as well as seed set efficiency in comparison to control (19.28% and 10.21%, respectively) provided the cultivars are compatible. Among cultivars, the highest germinability of pollen was found in ‘Brda’ and ‘Donna’ (8.2% and 8.23%, respectively), while ‘Bydgoszczanka’ showed the lowest germinability (2.97%). There were also pollen genotype dependent effects in in vivo seed set efficiency, which was highest in ’Brda’ (17.57%) and much lower in ‘Jutrzenka’ and ‘Polka’ (1.34% and 0.39%, respectively), which contributed to the incompatibility of crossed cultivars rather than pollen viability.


2005 ◽  
Vol 130 (3) ◽  
pp. 341-347 ◽  
Author(s):  
Nadine Ledesma ◽  
Nobuo Sugiyama

The effects of high-temperature stress on pollen viability and in vitro and in vivo germinability were studied in two facultative, short-day strawberries (Fragaria ×ananassa Duch.), `Nyoho' and `Toyonoka.' Plants were exposed to two day/night temperature regimes of either 23 °C/18 °C (control) or 30 °C/25 °C (high temperature) from when the first inflorescence became visible until anthesis. Pollen viability in `Nyoho' was only slightly affected at 30 °C/25 °C when compared with pollen from plants grown at 23 °C/18 °C. In `Toyonoka', however, pollen viability was significantly lower at 30 °C/25 °C than at 23 °C/18 °C. The in vitro germination percentages were significantly lower in pollen from plants grown at 30 °C/25 °C and germinated at 30 °C than from plants grown at 23 °C/18 °C and germinated at 23 °C in both cultivars. But the percentages were much lower in `Toyonoka' than in `Nyoho', particularly at the 30 °C germination temperature. Pollen from plants grown at 23 °C/18 °C also extended longer pollen tubes than pollen grown at 30 °C/25 °C in both cultivars, but `Nyoho' had longer pollen tubes than `Toyonoka' at 30 °C/25 °C. Fluorescence microscopy revealed that most of the `Nyoho' pollen germinated on the stamen, elongated through the style and reached the ovule regardless of temperature treatment. In `Toyonoka', pollen germination and elongation were greatly inhibited at 30 °C/25 °C, resulting in unfertilized ovules. These results suggest that certain strawberry cultivars produce heat-tolerant pollen, which in turn could result in higher fruit set.


1970 ◽  
Vol 40 (1) ◽  
pp. 93-95 ◽  
Author(s):  
Feruzan Dane ◽  
Nuran Ekici

In vitro and in vivo studies on pollen germination of Paeonia tenuifolia L. (Paeoniaceae) revealed that pollen grains are shed at two-celled stage. Normal and abnormal pollens were observed. Pollen viability was recorded between 55 and 75%. In vitro studies revealed 85% germination and usually the germination was monosphonic. Some pollen tubes with swollen tube tip and undulations were found. Styles and stigma were found to contain many pollen tubes 24 hrs after pollination. Key words: Paeonia tenuifolia; Pollen tube; In vitro growth; In vivo growth  DOI: http://dx.doi.org/10.3329/bjb.v40i1.8003 Bangladesh J. Bot. 40(1): 93-95, 2011 (June)


2021 ◽  
pp. 1-10
Author(s):  
Sourbh Kumar ◽  
Uttam Chandel ◽  
Satish Kumar Guleria

Abstract An investigation to optimize the protocol for application of colchicine for enhancing the doubled haploid production in maize was done. 106 maize genotypes were used as maternal parents, whereas, pollen source involved tropically adopted haploid inducer (TAIL P1 and TAIL hybrid). After the elimination of chromosomes of inducer lines, haploid seeds were obtained from the crosses. Haploid seedlings were treated with three different doses, such as 0.04, 0.06 and 0.08 per cent of colchicines for different durations (8, 12 and 15 hours). The response of various colchicine concentrations applied for different time durations revealed significant differences at P ≤ 0.05 for various parameters viz., per cent plants survivability, stalk colour, the fertility of tassel, silk present/absent, pollen viability, seed set and per cent doubled haploid formation. In maize, colchicine doses of 0.04 per cent for 12 hours and 0.06 per cent for 8 hours, respectively were established as optimum for enhanced doubled haploid production. But among these two, 0.04 per cent for 12 hours was observed to be best dose for doubled haploid production in maize.


1993 ◽  
Vol 41 (1) ◽  
pp. 35 ◽  
Author(s):  
M Ramsey ◽  
N Prakash ◽  
S Cairns

The breeding systems of disjunct tableland and coastal populations of Christmas bells were determined using hand-pollination experiments. In both populations, 90% or more of self-pollinated plants produced seeds. Tableland plants were significantly more self-fertile than coastal plants (ratio of self seed set to cross seed set: tableland, 0.55 ± 0.03; coast, 0.08 ± 0.02). Significant variation among plants for self-fertility was found in both populations. Autofertility was 1.6% or less in both populations indicating that pollen vectors are necessary for seed set. Seed set by agamospermy in both populations was less than 0.1%. Percentage seed abortion was greater in self-pollinated plants than cross-pollinated plants in both populations. In both self- and cross-pollinated plants, seed abortion was twice as great in the coastal population than in the tableland population. No evidence was found for stigmatic or stylar self-incompatibility. Self and cross pollen adhered to and germinated equally well on stigmas in both populations (72 - 77% germination). Similarly, there were no differences between pollination treatments or populations in the percentage of ovules penetrated by pollen tubes (82 - 89% penetration). When self-pollination preceded cross-pollination by 24 h or longer seed set was significantly reduced compared to flowers that were cross-pollinated only, suggesting ovules were pre-empted by self pollen tubes. Collectively these results strongly suggest that self seed set was reduced by a mechanism operating at the ovule level, such as early-acting inbreeding depression due to recessive seed-aborting genes, although incomplete late-acting self-incompatibility cannot be ruled out. For coastal plants, this ovular mechanism largely prevents selfing, indicating plants were predominantly outcrossing although most produced some self seed. For tableland plants, substantial seed set by selfing may occur under natural conditions.


2017 ◽  
Vol 6 (06) ◽  
pp. 1630
Author(s):  
Amalaurpava Mary Michael* ◽  
Gopal G.V.

Climate change may influence the composition of plant communities by affecting the reproduction, growth, establishment and local extinction of plant species. Predicting the effect of climate change may provide insight into the impact and relationship between weather pattern and flowering phenology in long term studies. Pollen viability is one important factor of reproduction. Pollen viability is essential for a good fruit set. The study is undertaken to evaluate the influence of temperature and rainfall fluctuation pattern on floral phenology and pollen viability in the restricted distribution of the plant Ehretia pubescens Benth. Field observation on floral phenology has revealed changes occurring in the pollen viability with the change of temperature and rainfall. The plants show drought resistant; however, it is observed that it blooms immediately after the rainfall. Change in the rainfall pattern results in change in flowering pattern. On the natural habitat fruit set is a good indicating of good germinability of pollen grain in vivo. In vitro pollen germinability is less efficient for this species as supported by the data.


2006 ◽  
Vol 12 (4) ◽  
Author(s):  
P. Vági ◽  
K. Imre ◽  
Z. Kristóf

In contrast to most angiosperms, Torenia contains a naked embryo sac and therefore has been considered since many years as an exciting model plant to study the double fertilization process of flowering seed plants. It is thus not surprising that the isolation of protoplasts from the female gametophyte has been reported already 20 years ago by Mol, the isolation of megaspores and megagametophytes has been published by the authors of this manuscript in 1996 and in 1999. The isolation of the male gametophyte and of sperm cells was published by the authors in 2004. The isolation of viable Torenia sperm cells is a crucial part of the elaboration of an in vitro fertilization system. Torenia sperm cells were isolated from in vivo — in vitro cultured pollen tubes. In this system pollen tubes first grow inside a cut style then follow their elongation in a solid isolation medium. The medium contained agarose in order to detain pollen tube contents. Released sperm cells and enzymatically isolated egg cells were collected and handled using glass micropipettes and transmitted to an electrofusion apparatus or polyethylene glycol containing media for fusion probes.


HortScience ◽  
1992 ◽  
Vol 27 (5) ◽  
pp. 425-427 ◽  
Author(s):  
Gregory A. Lang ◽  
E. James Parrie

Pollen from six southern highbush blueberry cultivars derived from Vaccinium corymbosum L. and one or more other species (V. darrowi Camp, V. ashei Reade, and V. angustifolium Aiton) was incubated on nutrient agar to determine tetrad viability, pollen tube growth rates, and incidence of multiple pollen tube germinations. `Avonblue' pollen had a significantly lower tetrad germination percentage than `Georgiagem', `Flordablue', `Sharpblue', `Gulfcoast', or `O'Neal', all of which had >90% viable tetrads. The in vitro growth rate of `O'Neal' pollen tubes was significantly higher than the growth rates of `Sharpblue' and `Georgiagem pollen tubes. Of those tetrads that were viable, more than two pollen tubes germinated from 83% and 91% of the `Gulfcoast' and `Sharpblue' tetrads, respectively, while only 11% of the `Flordablue' tetrads produced more than two pollen tubes. The total number of pollen tubes germinated per 100 tetrads ranged from 157 (`Flordablue') to 324 (`Sharpblue'), resulting in actual pollen grain viabilities ranging from 39% to 81%. Genetic differences in pollen vigor, as indicated by pollen viability, pollen tube growth rates, and multiple pollen tube germinations, may influence blueberry growers' success in optimizing the beneficial effects of cross-pollination on fruit development.


1992 ◽  
Vol 117 (2) ◽  
pp. 328-331 ◽  
Author(s):  
Robert D. Marquard

In vivo pollen tube growth of pecan [Carya illinoinensis (Wangenh.) K. Koch] was estimated to be ≈ 150 μm·hour-1 from 3 to 8 hours postpollination. Pollen tubes averaged 47, 194, 405, and 946 μm after 2, 3, 4, and 8 hours postpollination, respectively. Pollen tube growth was strongly influenced by temperature, and in vitro studies demonstrated pollen germination and tube growth were optimal at 27C for `Cape Fear' pecan. In in vivo studies, tubes of cross-pollen did not grow significantly faster than tubes of self-pollen. Pollen tubes of water hickory [C. aquatica (Michx. f.) Nutt.] grew significantly faster than those of C. illinoinensis. Bitternut [C. cordiformis (Wangenh.) K. Koch] and mockernut hickory (C. tomentosa Nutt.) pollen tubes grew significantly slower on pecan stigmas than did pecan pollen. Pollen arriving first on the stigma has a decided advantage for fertilization success of pecan. The fertilization success rate of pecan pollen arriving 24 hours after first pollen arrival was <3%.


Sign in / Sign up

Export Citation Format

Share Document