scholarly journals 449 Conservation Tillage Row Crop Production in California

HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 522A-522
Author(s):  
J.P. Mitchell ◽  
W.T. Lanini ◽  
S.R. Temple ◽  
E.V. Herrero ◽  
E.M. Miyao ◽  
...  

Conservation tillage (CT) row crop production is currently not widely adopted in California. Recently, however, interest in evaluating the potential of CT systems to reduce production costs and improve soil quality is growing in many areas in the state. In 1997 and 1998, we evaluated four cover crop mulches (rye/vetch, triticale/vetch, Sava medic, and Sephi medic) in a CT-transplanted tomato system relative to the conventional winter fallow (CF) practice. In both years, yields were comparable to the CF under the triticale/vetch and rye/vetch mulches. Earthworm populations after 2 years of CT production were increased 2- to 5-fold under mulches relative to the CF system. Soil carbon was increased by 16% and 6% after 2 years of CT production under the triticale/vetch and rye/vetch mulches, respectively. Weed suppression under the triticale/vetch and rye/vetch was comparable to the CF with herbicide system early in the season in both years but was maintained through harvest in only one season. Soil water storage (0-90 cm) was similar at the beginning of the tomato season in triticale/vetch, rye/vetch, and fallow plots but was higher under the mulches during much of the last 45 days of the 1998 season. Further refinement of CT practices in California's vegetable production regions is needed before wider adoption is likely.

2017 ◽  
Vol 31 (4) ◽  
pp. 557-573 ◽  
Author(s):  
Guihua Chen ◽  
Lauren Kolb ◽  
Alan Leslie ◽  
Cerruti R. R. Hooks

Adoption of conservation tillage practices has been slow in organic vegetable production, partially due to producers’ concerns regarding weed management. Integrating cover crops into a conservation tillage program may provide organic producers a viable weed management option enabling growers to practice conservation tillage. A four-year study was conducted to evaluate the influence of different tillage methods (two conventional and two conservation practices) jointly with a mixed winter cover crop for weed suppression, time required for hand weeding, and crop yield in organically managed eggplant (2012 and 2014) and sweet corn (2013 and 2015) production systems. Tillage treatments were conventional tillage without surface mulch (CT-BG) and with black polyethylene (plastic) mulch (CT-BP), strip-tillage (ST), and no-tillage (NT) with cover crop residue. At 2 and 7 WAT/P (weeks after transplanting/planting), intra-row weed density was higher in CT-BG and ST, and inter-row weed density was higher in CT-BG and CT-BP treatments. Time required for hand-weeding was greatest in CT-BG and least in CT-BP and NT treatments. Eggplant yield was lowest in NT treatment in 2012 but similar among treatments in 2014. Sweet corn yield was similar among treatments in 2013 but highest in ST in 2015. Though both CT-BP and NT treatments showed greater potential for weed suppression, production input was highest in CT-BP but least in NT. Implications of these findings suggest that there is a potential to use strip tillage integrating with stale seedbed tactic for weed management in organic vegetables, which reduces herbicide use, hand-labor, and overall weed management cost while maintaining high yield potential.


2006 ◽  
Vol 21 (3) ◽  
pp. 159-164 ◽  
Author(s):  
Andrew J. Price ◽  
D. Wayne Reeves ◽  
Michael G. Patterson

Information is needed on the role of cover crops as a weed control alternative due to the high adoption of conservation tillage in soybean [Glycine max (L.) Merr.] production. Field experiments were conducted from fall 1994 through fall 1997 in Alabama to evaluate three winter cereal cover crops in a high-residue conservation-tillage, soybean production system. Black oat (Avena strigosa Schreb.), rye (Secale cereale L.), and wheat (Triticum aestivum L.) were evaluated for their weed-suppressive characteristics compared to a winter fallow system. Three herbicide systems were utilized: no herbicide, a mixture of two pre-emergence (PRE) herbicides, or PRE plus post-emergence (POST) herbicides. The PRE system contained pendimethalin plus metribuzin. The PRE plus POST system contained pendimethalin plus a prepackage of metribuzin and chlorimuron ethyl applied PRE, followed by an additional chlorimuron ethyl POST application. No cover crop was effective in controlling weeds without a herbicide. However, when black oat or rye was utilized with only PRE herbicides, weed control was similar to the PRE plus POST input system. Thus, herbicide reductions may be attained by utilizing cover crops that provide weed suppression. Rye and black oat provided more effective weed control in the PRE only herbicide input system than wheat in conservation-tillage soybean. The winter fallow, PRE plus POST herbicide input system yielded significantly less soybean one out of three years when compared to systems that included a winter cover crop.


Author(s):  
John M. Wallace ◽  
Sarah Isbell ◽  
Ron Hoover ◽  
Mary Barbercheck ◽  
Jason Kaye ◽  
...  

Abstract Organic grain producers are interested in interseeding cover crops into corn (Zea mays L.) in regions that have a narrow growing season window for post-harvest establishment of cover crops. A field experiment was replicated across 2 years on three commercial organic farms in Pennsylvania to compare the effects of drill- and broadcast-interseeding to standard grower practices, which included post-harvest seeding cereal rye (Secale cereale L.) at the more southern location and winter fallow at the more northern locations. Drill- and broadcast-interseeding treatments occurred just after last cultivation and used a cover crop mixture of annual ryegrass [Lolium perenne L. ssp. multiflorum (Lam.) Husnot] + orchardgrass (Dactylis glomerata L.) + forage radish (Raphanus sativus L. ssp. longipinnatus). Higher mean fall cover crop biomass and forage radish abundance (% of total) was observed in drill-interseeding treatments compared with broadcast-interseeding. However, corn grain yield and weed suppression and N retention in late-fall and spring were similar among interseeding treatments, which suggests that broadcast-interseeding at last cultivation has the potential to produce similar production and conservation benefits at lower labor and equipment costs in organic systems. Post-harvest seeding cereal rye resulted in greater spring biomass production and N retention compared with interseeded cover crops at the southern location, whereas variable interseeding establishment success and dominance of winter-killed forage radish produced conditions that increased the likelihood of N loss at more northern locations. Additional research is needed to contrast conservation benefits and management tradeoffs between interseeding and post-harvest establishment methods.


2000 ◽  
Vol 15 (4) ◽  
pp. 146-153 ◽  
Author(s):  
R.S. Feldman ◽  
C.E. Holmes ◽  
T.A. Blomgren

AbstractWe tested the usefulness of mulching with polypropylene landscape fabric and compost as alternatives to bare soil for growing red cabbage and watermelon. Polypropylene landscape fabric has features similar to the polyethylene film that is popular for commercial vegetable production, but its durability permits multi-year use, which would reduce excessive waste produced from the typical single-season use of polyethylene film. On the other hand, compost used as mulch enhances soil development while providing weed suppression and water retention, among other benefits. Yields of red cabbage and watermelon were measured for 3 years in plots receiving either 10 cm compost, landscape fabric, or no mulch. Labor associated with crop production and weed suppression was measured as time spent on each task. Cabbage yields over 3 years followed the treatment order of compost > no mulch > fabric, while for melon yields it was compost > fabric > no mulch. Total labor required over 3 years for both crops, according to treatments, was fabric > compost > no mulch. However, labor for the fabric-treated plots dropped sharply after the first year, because fabric was left in place after initial placement. Labor for unmulched cabbage plots increased over time due to weeding and transplanting; labor for unmulched and compost-mulched melon plots increased for the same reasons. Compost provided the highest crop yields with a moderate labor investment. Surface-applied compost substantially increased underlying soil nutrient levels. The study indicates that polypropylene landscape fabric may be a potential alternative to the more traditional polyethylene film for permanent beds in vegetable production.


HortScience ◽  
2004 ◽  
Vol 39 (4) ◽  
pp. 746D-747
Author(s):  
S. Alan Walters* ◽  
Scott A. Nolte ◽  
Joseph L. Matthews ◽  
Bryan G. Young

A field study was conducted in 2002 and 2003 to evaluate various herbicides (ethafluralin & clomazone, halosulfuron, and ethafluralin & clomazone + halosulfuron) with or without a winter rye (Secale cereale L.) cover crop in no-tillage `Daytona' cucumber (Cucumis sativus L.) production. All herbicides were applied preplant prior to cucumber transplanting, and no injury or stunting to cucumber was observed with any of the treatments evaluated at any time during the two growing seasons. Winter rye provided a significant advantage for weed control compared to the no cover crop production system. The combination of ethafluralin & clomazone + halosulfuron provided the greatest control of smooth crabgrass [Digitaria ischaemum (Schreb. Ex Schweig) Schreb. Ex Muhl.] and redroot pigweed (Amaranthus retroflexus L.). Ethafluralin & clomazone provided little redroot pig-weed control, while halosulfuron alone provided no control of smooth crabgrass. Winter rye enhanced cucumber yields in 2002 (drought conditions), while in 2003 (sufficient moisture and cooler soil temperatures), winter rye tended to suppress yields. During drought conditions (2002), treatments with ethafluralin & clomazone and ethafluralin & clomazone + halosulfuron produced similar yields. However, in 2003, treatments with ethafluralin & clomazone + halosulfuron produced greater yields than treatments with ethafluralin & clomazone. Overall, the handweed treatment provided the greatest yields, while the non-treated and halosulfuron only treatment provided the lowest yields. Winter rye will provide some additional weed control in a no-tillage vegetable production system, but may also provide negative effects by suppressing crop yield depending on seasonal growing conditions.


2005 ◽  
Vol 19 (3) ◽  
pp. 731-736 ◽  
Author(s):  
D. Wayne Reeves ◽  
Andrew J. Price ◽  
Michael G. Patterson

The increased use of conservation tillage in cotton production requires that information be developed on the role of cover crops in weed control. Field experiments were conducted from fall 1994 through fall 1997 in Alabama to evaluate three winter cereal cover crops in a high-residue, conservation-tillage, nontransgenic cotton production system. Black oat, rye, and wheat were evaluated for their weed-suppressive characteristics compared to a winter fallow system. Three herbicide systems were used: no herbicide, preemergence (PRE) herbicides alone, and PRE plus postemergence (POST) herbicides. The PRE system consisted of pendimethalin at 1.12 kg ai/ha plus fluometuron at 1.7 kg ai/ha. The PRE plus POST system contained an additional application of fluometuron at 1.12 kg/ha plus DSMA at 1.7 kg ai/ha early POST directed (PDS) and lactofen at 0.2 kg ai/ha plus cyanazine at 0.84 kg ai/ha late PDS. No cover crop was effective in controlling weeds without a herbicide. However, when black oat or rye was used with PRE herbicides, weed control was similar to the PRE plus POST system. Rye and black oat provided more effective weed control than wheat in conservation-tillage cotton. The winter fallow, PRE plus POST input system yielded significantly less cotton in 2 of 3 yr compared to systems that included a winter cover crop. Use of black oat or rye cover crops has the potential to increase cotton productivity and reduce herbicide inputs for nontransgenic cotton grown in the Southeast.


2005 ◽  
Vol 20 (4) ◽  
pp. 206-213 ◽  
Author(s):  
Y. Tuzel ◽  
A. Gul ◽  
O. Tuncay ◽  
D. Anac ◽  
N. Madanlar ◽  
...  

AbstractOrganic farming seems to be a solution in environmentally sensitive zones such as the protection zone of Tahtalı Dam, which supplies fresh water to Izmir, the third largest city in Turkey. Greenhouse vegetable production is the major agricultural activity in this area (Menderes Township). However, due to the pollution risk from agriculture, governmental authorities have issued a regulation discouraging the use of chemicals within the collection basin of the dam. An on-farm project was conducted in 2001 to introduce organic greenhouse vegetable production in the Tahtalı Dam preservation area and to serve as a model for other areas in Turkey facing similar ecological problems. Two irrigation levels and four organic fertilizers were tested on the growth of cucumbers (Cucumis sativus cv. Sardes). The four fertilizers were two rates of farmyard and poultry manure (30 and 50 tons ha−1) with and without two organic fertilizers based on either bacteria or algae. During the growing period, pests and diseases were monitored weekly and preparations allowed in organic agriculture were used when necessary. Plant diseases did not create any significant problem, but the pest population, in particular spidermites, increased. No significant differences in cucumber yield were found between the fertilizer and irrigation treatments tested. However, it should be noted that yields from the addition of 30 tons ha−1 of farmyard or poultry manure and organic fertilizers were the same as those for 50 tons ha−1 of manure alone. The average total yield was 13 kg m−2, within an acceptable range for short-term crop production in this region, but 55% lower than a conventional substrate culture trial nearby. However, due to reduced production costs and a price premium for organic products, the organic produce yielded a net return of US$1.12–1.79 per m2 whereas that for conventional bag culture produce was US$0.55 per m2. Our results indicate that, under present conditions, organic greenhouse cucumber production has less environmental impact and is more economic than conventional bag culture, due to reduced chemical input and reduced operating and initial investment costs.


1991 ◽  
Vol 1 (1) ◽  
pp. 72-76 ◽  
Author(s):  
C.D. Stanley ◽  
A.A. Csizinszky ◽  
G.A. Clark ◽  
J.W. Prevatt

Combinations ofvarious vegetable crop species grown in multiple-cropping sequences using microirrigation on a sandy soil were evaluated for production potential and changes in normal cultural management An initial fall-season fresh-market tomato crop was followed immediately by a winter-season crucifer crop (cauliflower, broccoli, or cabbage), which was followed by a spring-season cucurbit crop (cucumber, zucchini squash, or muskmelon). Studies were conducted over a 3-year period in southwestem Florida. Results showed that when cropping sequences were compared on a basis of a derived relative value index (RVI), the sequence of tomato-cauliflower-zucchini squash significantly outperformed other sequences. Several management concerns particular to the production system (crop residue removal and interference, plastic mulch deterioration and damage, and weed control) were identified and discussed. The potential savings when cropping sequences are compared to individual crop production resulted in net savings (dollar savings less additional production costs) that ranged from $565 to $1212/acre ($1396 to $2993/ha) and $614 to $1316/acre ($1516 to $3251/ha) for the 1986-87 and 1988-89 seasons, respectively.


2016 ◽  
Vol 26 (4) ◽  
pp. 409-416 ◽  
Author(s):  
Raymond Kruse ◽  
Ajay Nair

Cover crops can be used as a sustainable weed management tool in crop production systems. Cover crops have the ability to suppress weeds, reduce soil erosion, increase soil organic matter, and improve soil physical, chemical, and biological properties. In the north-central region of the United States, including Iowa, much cover crop research has been conducted in row crop systems, mainly with corn (Zea mays) and soybean (Glycine max) where cover crops are planted at the end of the growing season in September or October. There is little information available on the use of cover crops in vegetable cropping systems, particularly on the use of summer cover crops for fall vegetable production. The choice of the cover crop will significantly impact the entire fall vegetable production enterprise. Vegetable growers need information to identify the right cover crop for a particular slot in the cropping system and to understand how cover crops would affect weed suppression, soil properties, and successive vegetable crop yield. The time interval between cover crop termination and vegetable planting critically affects the growth and successive yield of the vegetable crop. This study investigated how short-duration summer cover crops impact weed suppression, soil properties, and ‘Adriana’ lettuce (Lactuca sativa) yield. The study also examined appropriate planting times of lettuce transplants after soil incorporation of cover crops. The experimental design was a randomized complete block split-plot design with four replications. Whole plots consisted of cover crop treatments: ‘Mancan’ buckwheat (Fagopyrum esculentum), ‘Iron & Clay’ cowpea/southernpea (Vigna unguiculata), black oats (Avena strigosa), ‘Grazex II’ sorghum-sudangrass (Sorghum bicolor ssp. drummondii), and a control (no-cover crop) where weeds were left to grow unchecked. The subplot treatment consisted of two lettuce transplanting times: planted immediately or 8 days after cover crop soil incorporation. Fall-planted butterhead lettuce was used. Data were collected on cover crop biomass, weed biomass, soil nutrient concentration, lettuce growth, and yield. All cover crops significantly reduced weed biomass during the fallow period as compared with the control treatment. Highest degree of weed suppression (90% as compared with the no-cover crop control treatment) was provided by buckwheat. Southernpea, a legume, increased soil nitrogen (N) concentration and contributed to higher lettuce yield and improved quality. Southernpea also enhanced lettuce growth and led to an earlier harvest than other treatments. Sorghum-sudangrass showed evidence of detrimental effects to the marketable lettuce crop. This was not due to N immobilization but presumably due to alleopathic properties. There is no clear pattern within any cover crop treatment that lettuce planting time following cover crop termination affects plant growth; however, planting early or soon after cover crop incorporation ensures more growing degree days and daylight, thus leading to timely harvest of a higher quality product. This study demonstrates that cover crops can successfully be integrated into vegetable cropping systems; however, cover crop selection is critical.


2011 ◽  
Vol 27 (1) ◽  
pp. 41-48 ◽  
Author(s):  
S. Chris Reberg-Horton ◽  
Julie M. Grossman ◽  
Ted S. Kornecki ◽  
Alan D. Meijer ◽  
Andrew J. Price ◽  
...  

AbstractOrganic systems in the southeastern USA offer unique challenges and solutions to crop production due to regional soil and climate characterized by highly weathered soil types, high precipitation and the capacity to grow cover crops in the winter. Recently, the interest of producers and researchers in high-residue cover crops and conservation tillage systems has increased. Various designs of the roller–crimper to manage cover crops have been invented and demonstrated to growers in the southeastern region of the USA over the past 17 years. The impacts of high-residue cover crop mulches on the agronomic systems in the region are diverse. Legume cover crops assist with meeting N demand from cash crops though they decompose rapidly and are seldom sufficient for N demanding crops such as corn. Cereal cover crop mulches can have the opposite effect by immobilizing N and have a longer impact on soil moisture and weed dynamics. While undesirable for many crops, N immobilization is one possible mechanism for weed suppression in legume cash crops planted into cereal residues. Other cover crop weed suppression mechanisms include physical impedance, light availability, allelopathy and microclimate effects. Regardless of the cause, successful weed control by mulches is highly dependent on having substantial biomass. The southeastern region is capable of producing cover crop biomass in excess of 9000 kg ha−1, which is sufficient for weed control in many cash crops, although supplementary weed control is sometimes necessary. Long-term data are needed to predict when farmers should add supplementary weed control. More work is also needed on how much additional N is required for the cash crops and how best to deliver that N in a high-residue environment using organic sources.


Sign in / Sign up

Export Citation Format

Share Document