scholarly journals Growth Regulators Reduce Leaf Yellowing in Easter Lily Caused by Close Spacing and Root Rot

HortScience ◽  
2000 ◽  
Vol 35 (4) ◽  
pp. 657-660 ◽  
Author(s):  
Susan S. Han

The development of greenhouse leaf yellowing in Easter lilies (Lilium longiflorum Thunb.) was significantly reduced by the application of growth regulator solutions containing gibberellins 4 and 7 (GA4+7) or benzyladenine (BA). Solutions containing BA alone significantly reduced leaf yellowing on plants caused by close spacing but were less effective than GA4+7. Application of BA alone, however, was not effective against root rot-induced leaf yellowing. When plants were treated with GA4+7 or BA + GA4+7 around the visible bud stage, nearly all of the leaves remained green until the end of the growing season. These growth regulators, however, increased the final height of the plants by 8–10 cm. The developmental rate and size of the flower buds, as well as the length of the pedicels were not affected by the growth regulator treatments. Thus application of these growth regulators greatly improved the quality of the leaves without compromising the quality and timing of the flowers. Chemical name used: N-(phenylmethyl)-1H-purine-6-amine (benzyladenine, BA).

1997 ◽  
Vol 122 (6) ◽  
pp. 869-872 ◽  
Author(s):  
Susan S. Han

Postproduction leaf yellowing of Easter lily (Lilium longiflorum Thunb.) can be prevented by using growth regulators. Solutions containing benzyladenine (BA) reduced the percentage of yellow leaves in cold-stored plants, but solutions containing gibberellic acid (GA3) were not effective. Treatment with commercial products containing GA4+7 (Provide) or GA4+7 and BA (Promalin) nearly completely prevented the development of leaf yellowing. Concentrations as low as 25 mg·L-1 were effective. Leaf yellowing was prevented by growth regulators only on leaves that had been treated, indicating that the growth regulators were not mobilized in the plants. Growth regulator solutions halted further development of leaf yellowing when applied to plants that already had some chlorotic basal leaves. This result suggests that growth regulators need not be applied preventively. Treatment can be delayed until chlorotic lower leaves are first seen on plants. The striking effects of growth regulators in preventing leaf yellowing did not affect the development and opening of flower buds.


1997 ◽  
Vol 122 (1) ◽  
pp. 117-121 ◽  
Author(s):  
Rosanne E. Franco ◽  
Susan S. Han

Senescence of excised Easter lily leaves is typically marked by a rise in respiration without a concomitant production of ethylene. Treating excised leaves with 500 mg·L-1 of gibberellic acid (GA3) or benzyladenine (BA) significantly delayed the onset of leaf yellowing, lowered the respiration rates by one-third to one-half, and markedly delayed the respiratory rise. Similar effects on respiration were detected in leaves treated with BA or GA3 before a 4-week period of cold storage and in leaves treated after chlorosis had initiated. Results of this study indicate that excised Easter lily leaves respond to the growth regulators with a significant decrease in respiration rate.


HortScience ◽  
2000 ◽  
Vol 35 (5) ◽  
pp. 830C-830
Author(s):  
Susan S. Han

The development of postharvest leaf yellowing affects the quality of cut Oriental and Asiatic lilies. Without cold storage, lower leaves began to turn yellow ≈1 week after placing them in an interior environment. The development of leaf yellowing continued to progress upward until the vase life was over with >25% of the leaves chlorotic. Cold storage of cut lilies worsened this leaf disorder. The longer the duration of cold storage, the sooner the development of leaf yellowing and the higher the percentage of leaves that were chlorotic. Spraying leaves with a solution containing 25 mg·L-1 each of BA and GA4+7 significantly reduced cold-stored induced leaf yellowing in both Oriental and Asiatic lily. While the growth regulator treatment completely prevented leaf yellowing of cold-stored Asiatic lilies, its effectiveness in Oriental lilies diminished with the duration of cold storage. Timing of the growth regulator application was not critical, as there were no differences in leaf yellowing when the growth regulator solution was sprayed before or after the cold storage. The concentration of the growth regulators was inversely related to the development of leaf yellowing and concentrations <5 mg·L-1 each of BA and GA4+7 were not effective. Alternative means of applying the growth regulators were evaluated, including the addition of the growth regulators to the preservative solution or as a pulsed treatment. Both methods completely prevented leaf yellowing but also induced bud abortion. For practical application, spraying the growth regulator solution on the leaves prior to or after cold storage would significantly improve postharvest quality of the cut lilies.


HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 405D-405
Author(s):  
Susan S. Han

Effects of the duration of cold storage, as well as the concentrations, timing, and means of application of a growth regulator solution on the postharvest quality of cut Oriental and Asiatic lilies were evaluated. Without cold storage, lower leaves of Oriental lily `Stargazer' began to turn yellow ≈1 week after placing stem in an interior environment. The development of leaf yellowing continued to progress upward until the end of the vase life when there was an average of >25% chlorotic leaves. Cold storage worsened the leaf disorder. The longer the duration of cold storage, the earlier the development of leaf yellowing and the higher the percentage of leaves that were chlorotic. Spraying leaves with a solution containing 25 mg·L-1 each of BA and GA4+7 significantly reduced cold-storage-induced leaf yellowing and bud abortion in both Oriental and Asiatic lily. Concentration of the growth regulator solution was inversely related to the development of leaf yellowing. Timing of the growth regulator application was not critical, as there were no differences in leaf yellowing or bud development when the growth regulator solution was sprayed before or after the cold storage. Addition of the growth regulators to the preservative solution completely prevented leaf yellowing but also induced bud abortion. For practical application, spraying growth regulators prior to or after the cold storage would significantly improve the postharvest quality of cut lilies.


HortScience ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 597e-597 ◽  
Author(s):  
Royal D. Heins ◽  
Thomas F. Wallace ◽  
Susan S. Han

Chlorosis of Easter lily (Lilium longiflorum) lower leaves causes significant economic loss. Lily plants growing in 15-cm pots were sprayed 30, 60, or 90 days after emergence or at 60 and 90 days after emergence with 25 to 100 ppm each of benzyladenine and GA4+7 from Promalin (Abbott Chemical Co.) and were grown pot-to-pot until flower. Chlorotic leaf count at flower decreased as Promalin concentration increased; plants sprayed at 60 days had the smallest chlorotic leaf count. Chlorotic leaves at flower varied from 28% for control plants to 10% for plants sprayed with 100 ppm at 60 days and from 36% to 17% 3 weeks later, respectively. The Promalin sprays promoted significant stem elongation, but differences in height at flower were only 2 cm. Plants sprayed with 100 ppm at 30 days averaged one deformed flower per plant; plants sprayed at 60 days and 60 and 90 days averaged 0.0 and 0.1 deformed flower per plant, respectively. Additional trials in which only the lower part of the plant was sprayed prevented any chlorotic leaves without any significant effect on final height or flower bud quality.


2020 ◽  
Author(s):  
Ni Wayan Deswiniyanti ◽  
Ni Kadek Dwipayani Lestari

Lily (Lilium longiflorum) is a perennial herbaceous plant with white trumpet-shaped flowers, fragrant and bulbous. In vitro culture through bulbs is one of way propagation of lily plants, but it requires a long time and only produces limited plants. In vitro propagation is a very promising technique for plant propagation because it can produce a lot of plant seeds in a short time. Bulbs are one of the fastest explants for growing shoots in lilies, but it is not known for certain which cuts of explants from bulb scales are best for multiplying in vitro. This study aims to determine the effect of lily bulb explants and the concentration of NAA and BAP growth regulators on the growth of lily bulb explants. The best results were obtained on the base and middle cuts explant of bulb scales compared to the tip cuts explant ones. The best results of the growing percentage, the number of shoots and the best growing time are shown in the combination treatment of growth regulator 1 mg L−1 NAA and 1 mg L−1 BAP. The optimum results on the number of micro bulbs were found in the treatment of growth regulators 0.5 mg L−1 NAA and 1 mg L−1 BAP. The best results of the average time formed micro bulb was in the treatment of 1 mg L−1 NAA and BAP with middle explant cuts, and treatment concentrations of 0.5 mg L−1 NAA and BAP in the base explant section. The base and middle bulb explants are able to regenerate or grow higher shoots. This is caused by the presence of endogenous natural auxin and the spread of auxin in plant parts not in the same amount. Therefore when added to the exogenous growth regulator such as auxin or cytokines to culture media will further trigger the formation of micro tubers more quickly,. It can increase the concentration of endogenous growth regulators in cells, help growing process and developing tissue.   Keywords: Bulb, lily, micro bulbs, in vitro, shoots


HortScience ◽  
1995 ◽  
Vol 30 (2) ◽  
pp. 189a-189
Author(s):  
Rosanne E. Franco ◽  
Susan S. Han

Senescence of lower leaves of Easter lilies (Lilium longiflorum Thunb.) was previously shown to be delayed with application of the growth regulators, gibberellic acid (GA3) and benzyladenine (BA). This study was done to determine the physiological effects of GA3 and BA in relation to the delay of leaf senescence. Foliar application with 500 ppm BA or GA3 delayed chlorosis and lowered respiration rate in Easter lily leaves. A combination of 500 ppm BA and 500 ppm GA3 was more effective than the individual application of each. Gibberellic acid, BA, or their combination before cold storage resulted in delayed chlorosis and lowered respiration following removal from cold storage. Treatment with growth regulators after cold storage was less effective. Senescence of leaves was not associated with ethylene since ethylene production by leaves was undetectable by gas chromatograph. In addition, pulsing or continuous treatment with silver thiosulphate (STS), an inhibitor of ethylene synthesis, did not delay foliar chlorosis. Analysis of carbohydrate levels in Easter lily leaves treated with GA3, BA, or their combination may contribute to the understanding of the physiological effects of these two growth regulators.


HortScience ◽  
1991 ◽  
Vol 26 (2) ◽  
pp. 152-154 ◽  
Author(s):  
Richard J. McAvoy

Lilium longiflorum Thunb. cv. Ace grown without plant growth regulators and plants drenched with 0.5 mg a.i. ancymidol per pot following shoot emergence were compared to plants growing in a medium containing uniconazole-impregnated amendments. Uniconazole was applied at rates of 0.18, 0.018, and 0.0018 mg a.i. per pot using either impregnated rockwool (RW) or copolymer acrylamide acrylate (CA). Two other treatment groups received a uniconazole drench at potting (0.018 or 0.0018 mg a.i. per pot). Impregnated CA resulted in undesirably short lilies (i.e., plants <1.5 times the height of the pot) when 0.18 mg uniconazole per pot was incorporated into the medium; effective height control was obtained with CA at 0.018 mg/pot; no height control was observed at 0.0018 mg/pot. Similarly, final height of lilies grown in medium containing uniconazole-impregnated RW decreased as the rate of uniconazole increased. Pre-emergence potting medium drenches with uniconazole (0.018 and 0.0018 mg a.i. per pot) did not significantly affect lily growth and flowering. Ancymidol drench was less effective at retarding stem length and plant height than medium incorporation of 0.18 mg uniconazole. Flowering was not significantly affected by any treatment. Chemical names used: a-cyclopropyl-a-(4-methoxy-phenyl)-5-pyriimidine methanol(ancymidol);B-[(4-cyclophenyl)methyl]-a-(1,1-dimethylethyl)1 H-1,2,4-triazole-1-ethanol(paclobutrazol);(E)-(p-chloro-phenyl)-4,4-dimethyl-2-(1,2,4-triazol-1-yl)-1-penten-3-ol(uniconazole).


HortScience ◽  
1997 ◽  
Vol 32 (3) ◽  
pp. 459B-459
Author(s):  
Susan S. Han

The marked effects of growth regulators such as GA3 and BA in delaying leaf yellowing on excised leaves of Easter lilies decreased when studies were conducted on intact plants in a simulated interior environment. Solutions containing benzyladenine (BA) delayed the development of leaf yellowing in cold-stored plants, but solutions containing gibberellic acid (GA3) were not effective when applied to plants at the puffy bud stage and evaluated in a 22.6 ± 0.2°C room illuminated 12 h/day with 11.2 ± 0.1 μmol·s–1·m–2 cool-white fluorescent lamp. Treatment with commercial products containing GA4+7 (Provide) or GA4+7 and BA (Promalin) nearly completely prevent the development of leaf yellowing. Concentrations as low as 25 mg·L–1 were effective. The prevention of leaf yellowing by growth regulators was only effective on leaves that had been treated, indicating that mobilization of the growth regulators in the plants did not occur. Growth regulator solutions halted further development of leaf yellowing when applied to plants that already possessed some chlorotic, basal leaves. The striking effects of growth regulators on preventing leaf yellowing did not affect the development and opening of the flower buds and is a practical solution for the prevention of post-production leaf yellowing in Easter lilies.


2013 ◽  
Vol 23 (3) ◽  
pp. 306-311 ◽  
Author(s):  
Diana R. Cochran ◽  
Amy Fulcher

The objective of these experiments was to evaluate the response of Little Lime™ hardy hydrangea (Hydrangea paniculata ‘Jane’) across two seasons in response to single foliar applications of three plant growth regulators (PGRs) at two rates: dikegulac sodium at 800 or 1600 ppm, benzyladenine at 300 or 600 ppm, or ethephon at 500 or 1000 ppm. There were two additional treatments: a hand-pruned control leaving three nodes and an unpruned water control (untreated) applied the same day as the PGR applications. To evaluate PGR efficacy, vegetative growth, floral attributes, branch symmetry, and phytotoxicity were assessed. Dikegulac sodium significantly increased branch number (BN) compared with all other treatments. Branch symmetry was greater in dikegulac sodium (800 or 1600 ppm) and hand-pruned treatments compared with the untreated and other PGR treatments (2011 and 2012). Flower number was greater in all PGR treatments compared with hand-pruned plants (2011 and 2012). The only treatment that promoted more symmetrical branching without reducing flower count was dikegulac sodium (800 or 1600 ppm). Phytotoxicity was observed in both seasons; however, no injury symptoms were evident 16 weeks after treatment (WAT), the termination of the experiment.


Sign in / Sign up

Export Citation Format

Share Document