scholarly journals A Monogenic Recessive Gene, fw, Conditions Flower Doubling in Nicotiana alata

HortScience ◽  
2001 ◽  
Vol 36 (1) ◽  
pp. 128-130
Author(s):  
Rozlaily Zainol ◽  
Dennis P. Stimart

A double-flower form of Nicotiana alata Link & Otto was characterized genetically as a monogenic recessive trait expressed when homozygous. Reciprocal crosses demonstrated no maternal effect on expression of double flowers. A single dominant gene expressed in the homozygous or heterozygous state caused the single-flower phenotype. The symbol fw is proposed to describe the gene controlling double-flower phenotype.

Author(s):  
Pei-Wen Kan ◽  
Yu-Ching Cheng ◽  
Der-Ming Yeh

Double-flowered gloxinia (Sinningia speciosa) cultivars with foliar variegation might have a greater market appeal as flowering foliage plants. Crosses were made among 16 gloxinia cultivars and their progenies were analyzed to determine the inheritance of leaf vein color, flower form, and floral symmetry. All plants from self-pollinating white-veined cultivars or crosses between white-veined and green-veined cultivars produced white veins. Progeny derived from self-pollinating plants of white-veined cultivars × green-veined cultivars segregated into a ratio of 3 white-veined:1 green-veined. All plants from self-pollinating or cross-pollinating single-flowered cultivars produced single flowers. Progeny of self-pollination or crosses between double-flowered cultivars segregated into a ratio of 3 double flowers:1 single flower. Contingency chi-square tests revealed that leaf vein color and flower form were inherited independently. New gloxinia progenies with homozygous white veins and double flowers were successfully developed from the F2 segregating population. Plants from self-pollinating or cross-pollinating cultivars with actinomorphic flowers produced actinomorphic flowers. A single dominant gene expressed in the homozygous or heterozygous state resulted in the zygomorphic flowers. Independent inheritance was observed between vein color and floral symmetry. Air spaces between the epidermis and the mesophyll cells were observed in the white, but not in the green, leaf vein portions. Net photosynthesis did not differ significantly between the white vein and adjacent green portion of the same leaf.


HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1169b-1169
Author(s):  
Fazal R. Rahimi ◽  
Catherine Carter

Zingiberene, a sesquiterpene, was detected in the foliage extract of L. hirsutum f. hirsutum Humb. and Bonp1. (hir), and confirmed by GC-MS. Zingiberene does not exist in L. hirsutum f. glabratum C. H. Mull (gla), which instead contains 2-tridecanone. 2-Tridecanone confers resistance to gla against Colorado Potato Beetle. The Presence of Zingiberene is associated with resistance against Colorado Potato Beetle in hir, which does not contain 2-tridecanone. The gene that conditions zingiberene acts differently in two different genetic backgrounds. In gla × hir this gene acts as a single recessive gene, while in L. esculentum × hir it acts as a single dominant gene. This situation, which has been studied in F2 and backcross populations of crosses in both directions are examined and discussed.


HortScience ◽  
2005 ◽  
Vol 40 (7) ◽  
pp. 1992-1994 ◽  
Author(s):  
Wesley E. Kloos ◽  
Carol G. George ◽  
Laurie K. Sorge

The cultivated gerbera daisy [Gerbera hybrida (G. jamesonii Bolus ex Adlam × G. viridifolia Schultz-Bip)] produces flowers that have either a dark (shades of dark brown, brown-black, black-purple, or black) or light (shades of green-yellow, yellow-green, or light yellow) central disk. The dark-centered varieties have increased in popularity over the past 20 years and provided an exciting color contrast, especially in white, yellow, and various pastel-colored flowers. The objective of this investigation was to determine the mode of inheritance of disk color in gerberas. A series of crosses were made to produce PA, PB, F1, F2, BC1A, and BC1B progeny to complete the Mendelian genetic analysis. Phenotypic segregation ratios indicated that dark disk color was determined by a single dominant gene, designated Dc, and the light disk color by a recessive gene, dc. Dominance appeared to be complete in that the disk color was similar in both homozygous and heterozygous Dc plants.


2018 ◽  
Vol 143 (1) ◽  
pp. 67-71
Author(s):  
Huan-Keng Lin ◽  
Tzu-Yao Wei ◽  
Chin-Mu Chen ◽  
Der-Ming Yeh

Stem anatomy and modulus of elasticity (MOE) were compared between upright and trailing cultivars of periwinkle [Catharanthus roseus (G.) Don.]. The inheritance of growth habit and flower form was also studied. Internode cross sections revealed that phloem fiber was distributed at the inner cortex in upright cultivars but not in trailing cultivars. Except the youngest internode, the upright ‘Vitesse Pink’ had the highest MOE throughout the 1st–13th internodes above the cotyledon. The more trailing ‘Cora Cascade Strawberry’ had consistently lower MOE than a less trailing ‘Cora Cascade Polka Dot’. All F1 plants between upright and trailing cultivars were upright, and the F2 generation derived from self-pollinating F1 fit a 3 upright : 1 trailing segregation ratio. All F1 plants between upright/double-flower and trailing/single-flower exhibited upright and single-flowers, whereas plants in the F2 generation fitted a 9 upright/single-flower : 3 trailing/single-flower : 3 upright/double-flower : 1 trailing/double-flower ratio. New double-flowered periwinkle selections with trailing growth habit were successfully developed from the F2 population.


HortScience ◽  
2012 ◽  
Vol 47 (12) ◽  
pp. 1679-1681 ◽  
Author(s):  
Chin-Mu Chen ◽  
Tzu-Yao Wei ◽  
Der-Ming Yeh

A double-flowered periwinkle [Catharanthus roseus (L.) G. Don.] mutant TYV1 was identified and the morphology and inheritance of the double-flowered phenotype was studied. TYV1 has an outer salverform whorl of petals and an additional inner funnel-shaped whorl of petals originating from the apex of the corolla. The apex of corolla tube forms a narrow opening. There are hairs under the opening at the apex. The stigma in this mutant is set below the anthers. The overlap between the top end of the pistil and bottom ends of anthers in TYV1 flowers at 1 to 2 days after anthesis is 0.56 ± 0.01 mm. TYV1 could be used as either the male or female parent in crossing. Self-pollinated TYV1 produced all double-flowered progeny compared with self-pollinated single-flowered cultivars Little Pinkie and Titan Burgundy, which produced all single-flowered progeny. F1 plants between TYV1 and ‘Little Pinkie’ or ‘Titan Burgundy’ were all single. Three F2 populations segregated into 3 single: 1 double ratio. Backcrossing F1 to seed parents also indicated that a double-flowered form was controlled by a recessive allele. A single dominant gene expressed in the homozygous or heterozygous state resulted in the single-flowered phenotype. All the young seedlings of self-pollinated TYV1 and double-flowered progeny had distorted leaves before the sixth pair of leaves emerged.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 534b-534
Author(s):  
James D. McCreight

Yellowing of melon (Cucumis melo L.) incited by lettuce infectious yellows virus (LIYV) reduces yield and fruit quality of infected plants. LIYV is transmitted only by the sweetpotato whitefly (Bemisia tabaci Genn.). Two naturally infected field tests indicated several potential sources of resistance to LIYV. PI 124112 and `Snake Melon' had mild symptoms in both field tests whereas PI 313970 was asymptomatic in the test in which it was included. In greenhouse tests using controlled inoculation, PI 313970 was asymptomatic, had negative ELISA assays for LIYV, and was negative for LIYV in serial transfers to Chenopodium. `Top Mark' and `PMR 5' were symptomatic, had positive ELISA assays for LIYV, and were positive for LIYV in serial transfers to Chenopodium in these greenhouse tests. Limited data indicate that resistance in PI 313970 is conditioned by a single, dominant gene.


2009 ◽  
Vol 99 (9) ◽  
pp. 1085-1089 ◽  
Author(s):  
C. R. Brown ◽  
H. Mojtahedi ◽  
L.-H. Zhang ◽  
E. Riga

Resistance to Meloidogyne chitwoodi was introgressed from Solanum bulbocastanum into the cultivated gene pool of potato. A single dominant gene is responsible for resistance to race 1 reproduction on the root system. An additional form of resistance was discovered in certain advanced backcross clones. A BC5 clone, PA99N82-4, resisted invasion of tubers by available nematode juveniles whether supplied by weeds or challenged by several root resistance-breaking pathotypes. This tuber resistance is inherited as a single dominant gene and is linked to RMc1(blb). Because this gene has been mapped to chromosome 11, tuber resistance genetic factors are inferred to be on the same chromosome in coupling phase. Among 153 progeny derived from crosses with PA99N82-4, 42 recombinants, comprising both resistant root/susceptible tuber and susceptible root/resistant tubers, were found while other progeny were doubly resistant (like PA99N82-4) or doubly susceptible. Therefore, the existence of two linked genetic factors controlling independently expressed traits is confirmed. The combination of the two phenotypes is likely to be a sufficient level of resistance to avoid tuber damage from circumstances that provide exogenous juveniles proximal to the tubers in the soil. These factors are weed hosts of M. chitwoodi host races and pathotypes of M. chitwoodi that overcome RMc1(blb). Under field conditions, where a resistance-breaking pathotype of M. chitwoodi was present, tuber-resistant PA99N82-4 breeding line produced tubers which were commercially acceptable and not culled. A related breeding line, root resistant but tuber susceptible, and Russet Burbank were severely tuber damaged and commercially unacceptable.


2011 ◽  
Vol 24 (1) ◽  
pp. 33-40
Author(s):  
M. J. Hasan ◽  
M. U. Kulsum ◽  
A. Ansari ◽  
A. K. Paul ◽  
P. L. Biswas

Inheritance of fertility restoration was studied in crosses involving ten elite restorer lines of rice viz. BR6839-41-5-1R, BR7013-62-1-1R, BR7011-37-1-2R, BR10R, BR11R, BR12R, BR13R, BR14R, BR15R and BR16R and one male sterile line Jin23A with WA sources of cytoplasmic male sterility. The segregation pattern for pollen fertility of F2 and BC1 populations of crosses involving Jin23A indicated the presence of two independent dominant fertility restoring genes. The mode of action of the two genes varied in different crosses revealing three types of interaction, i.e. epistasis with dominant gene action, epistasis with recessive gene action, and epistasis with incomplete dominance.DOI: http://dx.doi.org/10.3329/bjpbg.v24i1.16997


1980 ◽  
Vol 22 (1) ◽  
pp. 27-33 ◽  
Author(s):  
D. E. Harder ◽  
R. I. H. McKenzie ◽  
J. W. Martens

The inheritance of resistance to oat crown rust was studied in three accessions of Avena sterilis L. Accession CAV 4274 originated from Morocco, CAV 4540 from Algeria, and CAV 3695 from Tunisia. Seedling rust tests on F2 backcross families indicated the presence of two dominant genes for crown rust resistance in CAV 4274. One of these, a gene conditioning resistance to most races tested, was linked or allelic to gene Pc-38, and was designated gene Pc-62. The second gene conferred resistance only to one of the six races studied, and was not tested further. In CAV 4540, a single dominant gene, Pc-63 was possibly allelic with Pc-62 and linked or allelic to Pc-38. Genes Pc-62 and 63 are generally similar to Pc-38 in their resistance spectrum, but these three genes are differentiated by races CR 102, CR 103, and CR 107. A single dominant gene in CAV 3695 appeared to be Pc-50.


1962 ◽  
Vol 42 (1) ◽  
pp. 69-77 ◽  
Author(s):  
E. N. Larter ◽  
H. Enns

Four barley varieties, each immune to a Valki-attacking culture of loose smut (designated as race 2), were studied with respect to the inheritance of their resistance. Jet (C.I. 967) and Nigrinudum (C.I. 2222) were each found to possess two independent dominant genes determining resistance. Steudelli (C.I. 2266) proved to be immune to race 2 through the action of a single dominant gene, while resistance of Hillsa (C.I. 1604) was found to be conditioned by two complementary dominant genes. The absence of susceptible F3 families in crosses between Jet, Nigrinudum, and Steudelli indicated that these three varieties have in common a gene or genes for resistance to the race of smut used. The two complementary genes for resistance in Hillsa proved to be distinct from those of the other three varieties under study.The use of genetic analyses of disease resistance based upon classification of F3 families of the backcross to the resistant source is described and the merits of such a method are discussed.


Sign in / Sign up

Export Citation Format

Share Document