scholarly journals Effects of CPPU on Fruit Size, Set, and Yield of Southern Highbush Blueberry in Florida

HortScience ◽  
2004 ◽  
Vol 39 (4) ◽  
pp. 793A-793
Author(s):  
Jeffrey G. Williamson* ◽  
E. Paul Miller

Poor fruit set and sub-optimum berry size are potential yield- and profit-limiting factors for southern highbush (Vaccinium corymbosum) blueberry production in Florida. The cytokinin N-(2-chloro-4-pyridyl)-N'-phenylurea (CPPU) has increased fruit size and fruit set of a number of fruit crops including rabbiteye blueberry. The purpose of this study was to determine the effects of CPPU applied at different rates and phenological stages of bloom and/or fruit development on fruit size, set, and yield of southern highbush blueberry. `Millennia' and `Star' southern highbush blueberry plants located on a commercial blueberry farm in Alachua County, Fla., were treated with 5 or 10 ppm CPPU at various stages of development ranging from full bloom to 20 days after full bloom. In contrast to findings with rabbiteye blueberry, fruit set in this study of southern highbush blueberry was not affected by any of the CPPU treatments when compared to the controls. Nor was total fruit yield affected by CPPU treatments. The most noticeable potential benefit found in this study was an increase in mean fruit fresh weight from CPPU treatments. However, cultivars responded differently to CPPU with respect to mean fruit fresh weight. For `Millennia', only one CPPU treatment increased mean fruit weight compared to controls. However, for `Star', all but one CPPU treatment increased mean fruit fresh weight. Several CPPU treatments resulted in delayed fruit ripening for `Star' but not for `Millennia'. For `Star', the treatments that most consistently delayed fruit ripening tended to have greater fruit fresh weights.

HortScience ◽  
2007 ◽  
Vol 42 (7) ◽  
pp. 1612-1615 ◽  
Author(s):  
Jeffrey G. Williamson ◽  
D. Scott NeSmith

Greenhouse and field experiments were conducted to determine the effects of the growth regulator N-(2-chloro-4-pyridyl)-N′-phenylurea (CPPU) on fruit set, berry size, and yield of southern highbush blueberry (Vaccinium corymbosum hybrids). The experiments were conducted over a period of several years in Georgia and Florida. CPPU sprays were capable of increasing fruit set and berry weight of southern highbush blueberry, although the responses to CPPU treatment were variable and appeared to be influenced by factors such as rate, spray timing, and cultivar. In Florida, high natural fruit set may have prevented increased fruit set from CPPU. A slight delay in berry maturity was noted in several experiments. Spray burn occurred on several occasions and may be related to factors such as cultivar, rate, spray volume, and use of surfactant.


2016 ◽  
Vol 26 (2) ◽  
pp. 213-219 ◽  
Author(s):  
Sarah K. Taber ◽  
James W. Olmstead

Cross-pollination has been associated with improved fruit set, weight, and shortened time to ripening in southern highbush blueberry [SHB (Vaccinium corymbosum interspecific hybrids)]. Because of this, growers commonly plant two or more cultivars in small blocks to facilitate cross-pollination. However, many SHB cultivars may vary in the degree of improvement in each parameter after cross-pollination. Understanding the impacts of cross-pollination on a particular cultivar is crucial to forming planting recommendations, particularly as growers begin to transition to fields designed for machine harvest where large solid blocks would increase the harvest efficiency. The objective of this study was to examine the effects of cross- and self-pollination among 13 commonly planted or newly released SHB cultivars. Cross-pollination typically improved fruit set, fruit weight, and seed number while decreasing the average days to harvest. Cross-pollinated fruit always weighed more than self-pollinated fruit from the same cultivar, which was highly correlated to seed number per fruit. Although there was variation for each trait, interplanting with another unrelated cultivar sharing a similar bloom time remains the best recommendation to ensure early, high yield among these SHB cultivars.


HortScience ◽  
1998 ◽  
Vol 33 (1) ◽  
pp. 75-77 ◽  
Author(s):  
Mark K. Ehlenfeldt

Blueberry cultivars were treated with either soil drenches or foliar applications of paclobutrazol. Soil drenches of 25 mg·L-1 inhibited shoot elongation and stimulated earlier and greater flower bud production on `Bluetta', `Bluecrop', and `Jersey'. The treatments increased bud numbers 359% to 797%, and stimulated compound bud formation, while reducing formation of vegetative buds. This resulted in overcropping and reduced fruit size. Foliar applications at concentrations of 5, 10, 50, and 100 mg·L-1 increased bud set. Treatments did not significantly alter time to 50% flowering in `Bluecrop' or `Duke', but hastened flowering up to 5 days in `Blueray' at 200 ppm. Fruit ripening was significantly delayed at 100 and 200 ppm in `Bluecrop' due to overcropping, but no delays were observed in `Blueray' or `Duke'. Plant size and vigor appeared to be a determining factor in plant response. Chemical name used: PP333 or (2RS,3RS)-l(4-chlorophenyl)-4,4-dimethyl-2-(l,2,4-triazol-1-yl)pentan-3-ol (paclobutrazol).


HortScience ◽  
1999 ◽  
Vol 34 (4) ◽  
pp. 607-610 ◽  
Author(s):  
B.E. Maust ◽  
J.G. Williamson ◽  
R.L. Darnell

Floral budbreak and fruit set in many southern highbush blueberry (SHB) cultivars (hybrids of Vaccinium corymbosum L. with other species of Vaccinium) begin prior to vegetative budbreak. Experiments were conducted with two SHB cultivars, `Misty' and `Sharpblue', to test the hypothesis that initial flower bud density (flower buds/m cane length) affects vegetative budbreak and shoot development, which in turn affect fruit development. Flower bud density of field-grown plants was adjusted in two nonconsecutive years by removing none, one-third, or two-thirds of the flower buds during dormancy. Vegetative budbreak, new shoot dry weight, leaf area, and leaf area: fruit ratios decreased with increasing flower bud density in both cultivars. Average fruit fresh weight and fruit soluble solids decreased in both cultivars, and fruit ripening was delayed in `Misty' as leaf area: fruit ratios decreased. This study indicates that because of the inverse relationship between flower bud density and canopy establishment, decreasing the density of flower buds in SHB will increase fruit size and quality and hasten ripening.


HortScience ◽  
1997 ◽  
Vol 32 (3) ◽  
pp. 537C-537
Author(s):  
J.G. Williamson ◽  
R.L. Darnell

Two-year-old, container-grown `Misty' southern highbush blueberry plants were sprayed to drip with two concentrations of hydrogen cyanamide (HCN) (20.4 g·L–1 and 10.2 g·L–1) after exposure to 0, 150, or 300 hr of continuous chilling at 5.6°C. All plants were sprayed immediately after chilling and placed in a greenhouse for several weeks. The plants were moved outdoors during flowering to increase cross-pollination from nearby `Sharpblue' blueberry plants. HCN sprays killed some of the more advanced flower buds on shoot terminals and on small-diameter wood from the previous spring growth flush. Significantly greater flower bud mortality occurred for the 20.4 g·L–1 HCN sprays than for the 10.2 g·L–1 sprays. Flower buds subjected to 0 hr of chilling were more susceptible to spray burn than flower buds receiving 150 or 300 hr of chilling. Very little flower bud death occurred with the 10.2 g·L–1 HCN rate on plants receiving 300 hr of chilling. Vegetative budbreak was advanced for both HCN treatments compared to controls, regardless of chilling treatment. HCN-treated plants were heavily foliated at full bloom, while non-treated plants had very few to no leaves during bloom. HCN may be useful for stimulating vegetative growth in some southern highbush blueberry cultivars that suffer from poor foliation during flowering and fruit set.


1997 ◽  
Vol 122 (6) ◽  
pp. 891-896 ◽  
Author(s):  
Kenna E. MacKenzie

The effects of pollination treatments on fruit set and five berry characteristics [mass, diameter, number of apparently viable seeds (well-developed, plump with dark seed coat), total seed number (includes apparently viable and partially developed seeds), and harvest date] were examined on three highbush blueberry cultivars. Pollination treatments included unpollinated, open pollinated, emasculated, and three hand pollinations that used pollen from the same flower, from the same cultivar, or from a different cultivar. Berries matured earliest and were smallest with the most apparently viable seeds in `Northland', `Patriot' had the greatest fruit set and smallest seed number, and `Bluecrop' matured the latest. Fruit set was greater, berry size larger, seed number smaller, and maturation later in 1990 than 1991. For all three cultivars, berries were generally smallest, latest maturing, and had the fewest seeds when pollination was prevented and were largest with the most seeds and earliest maturing in open visitation. Emasculation resulted in berries similar to those from unpollinated flowers. For berry characteristics, cross-pollination was of benefit for `Patriot' and possibly `Northland' but not `Bluecrop'. Thus, commercial highbush blueberry planting designs must be based on the pollination requirements of the particular cultivar. `Northland' berries almost always had seeds, while `Patriot' showed high levels and `Bluecrop' low levels of parthenocarpy.


HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 537B-537
Author(s):  
Ingrith D. Martinez ◽  
P.M. Lyrene

Fruit set, fruit size, and seed production after hand pollination in a greenhouse were compared for southern highbush blueberry managed in two ways: a) 69 clones were allowed to go dormant and lose their leaves in the field before being dug and subjected to 1000 hours at 5 °C and b) 26 clones were kept growing in a greenhouse through fall and winter without leaf loss and without chilling, to induce flowering on plants that had mature leaves. On each plant in both management systems, some flowers were self-pollinated, some were cross-pollinated, and others had the styles removed before anthesis to prevent pollination. For >1000 flowers per pollination treatment on the deciduous plants, fruit set averaged 1% for no pollination, 46% for self-pollination, and 76% for cross-pollination. The corresponding values for the evergreen plants were 23%, 59%, and 81%. Parthenocarpic berries averaged 0.37 g/berry for deciduous plants and 1.01 g for evergreen plants. Both crossed and selfed berry weights averaged slightly higher for the evergreen plants than for the deciduous plants, but seed number per berry was much lower for the evergreen plants (12 seeds in crossed berries and four seeds in selfed berries) compared to deciduous plants (37 and 8). Southern highbush blueberry plants that flower without going dormant appear to have much higher parthenocarpic capabilities than those that flower after a dormant period.


1991 ◽  
Vol 116 (5) ◽  
pp. 770-773 ◽  
Author(s):  
Gregory A. Lang ◽  
Robert G. Danka

To study self- and cross-pollination effects on fruit development in southern highbush (mainly Vaccinium corymbosum L.) blueberries, `Sharpblue' plants were caged with honey bees (Apis mellifera L.) and other `Sharpblue' or `Gulfcoast' plants at anthesis. Ratios of pollinizer: fruiting flowers ranged from 2.1 to 4.5. Cross-pollination increased fruit size by ≈14% and seed count by 27% but did not influence fruit set. Overall, seed count decreased by 58% during the 30 days of harvest, but this did not directly affect fruit size. Seed count appeared to influence earliness of ripening as much as it influenced fruit size. Cross-pollination increased the harvest percentage of early-ripening fruits by ≈140% and of premium market fruits (those ≥ 0.75 g) by 13% and decreased the percentage of small fruits by 66%. Consequently, a 43% increase in premium early market crop value (nearly $5000/ha) resulted from optimizing `Sharpblue' cross-pollination.


HortScience ◽  
2018 ◽  
Vol 53 (2) ◽  
pp. 191-194
Author(s):  
Matthew Arrington ◽  
Lisa Wasko DeVetter

Yield components including fruit set and berry size in northern highbush blueberry (Vaccinium corymbosum) can be limited in key production regions like western Washington. Climactic conditions influence the activity levels of blueberry’s primary commercial pollinator, honey bee (Apis mellifera). Cool springs with frequent rainfall, which are common during the spring bloom period in western Washington, can reduce honey bee activity, pollination efficiency, and subsequent fruit set and yields. Increasing honey bee hive density may be a simple technique that growers can employ to increase the number of honey bees foraging during periods of good weather, interspersed with the poor weather, and therefore, increase fruit set and related yield components. The objective of this study was to evaluate if increased honey bee hive densities improve pollination and subsequent yield components in western Washington blueberry. Three field sites with mature ‘Duke’ plants were stocked with 10 hives/ha of honey bees (control), and three other field sites (also ‘Duke’) were stocked with 20 hives/ha (high hive density). Honey bee visitation and yield components, including fruit set and berry weight, were measured. Estimated yield, seed number/berry, and fruit firmness were also monitored. There were no significant differences in fruit set regardless of honey bee hive density. However, honey bee visitation and estimated yield increased with increased honey bee hive density. Berry weight and seed number per berry were also increased with increased honey bee hive density, although firmness was unaffected. Results indicate that increasing honey bee hive densities can help blueberry growers improve berry size and overall yields, suggesting this is a practice growers can implement if their production is constrained by insufficient pollination.


HortScience ◽  
1997 ◽  
Vol 32 (3) ◽  
pp. 443D-443
Author(s):  
Peter A.W. Swain ◽  
Rebecca L. Darnell

Two cultivars of southern highbush blueberry (Vaccinium corymbosum interspecific hybrid) were grown in containers under the traditional deciduous production system, or the dormancy-avoiding evergreen production system. In the dormancy-avoiding system, plants are maintained evergreen and do not enter dormancy in the winter. This alleviates the chilling requirement, thus extending the potential growing area of blueberries into subtropical regions. Plants in the evergreen production system were maintained in active growth through weekly or biweekly N fertilization (≈21–23 g N/ plant per year). Keeping foliage through the year lengthens the duration of the photosynthetic season of the plant and is hypothesized to improve the carbohydrate (CHO) status of the evergreen plants. This, in turn, may decrease source limitations to reproductive development and potentially increase fruit number and/or size. In both cultivars, the evergreen production system advanced the time of anthesis by 3 to 4 weeks compared to the deciduous production system. Plants in the evergreen system initiated 10% to 25% more flower buds than plants in the deciduous system, depending on cultivar. Average leaf area, leaf fresh weight, total above-ground fresh weight, bud density, and cane length were greater in the evergreen plants than deciduous. The evergreen production system increased plant fresh weight and flower bud number compared to the deciduous system, and may ultimately increase yield.


Sign in / Sign up

Export Citation Format

Share Document