chilling treatment
Recently Published Documents


TOTAL DOCUMENTS

55
(FIVE YEARS 6)

H-INDEX

9
(FIVE YEARS 1)

Horticulturae ◽  
2021 ◽  
Vol 7 (12) ◽  
pp. 586
Author(s):  
Shah Rafiq ◽  
Nasir Aziz Wagay ◽  
Irshad Ahmad Bhat ◽  
Zahoor Ahmad Kaloo ◽  
Sumaira Rashid ◽  
...  

Aconitum chasmanthum Stapf ex Holmes, a highly valued medicinal plant, is a critically endangered plant species with restricted global distribution. Because there is no published report on the in vitro micropropagation of A. chasmanthum, the present study was undertaken to contribute to the development of an efficient micropropagation protocol for its conservation. Seeds collected from the wild showed enhanced germination after being given a chilling treatment (−4 °C and −20 °C) for different durations (10, 20, 30 and 40 days). Seeds given a chilling treatment of −4 °C for 10 days showed enhanced germination rates of 47.59 ± 0.53% with a mean germination time of 10.78 ± 0.21 days compared to seeds kept at room temperature when grown in an MS basal medium. Nodes, leaves and stems, taken from 20–40-day-old seedlings, were used as an explant for micropropagation. An MS medium supplemented with different concentrations of cytokinins (BAP, Kn), auxins (2,4-D, NAA), and an additive adenine sulphate were tested for callusing, direct shoot regeneration and rooting. Only nodal explants responded and showed direct multiple shoot regeneration with 7 ± 0.36 shoots with an elongation of 5.51 ± 0.26 cm in the MS medium supplemented with BAP 0.5 mg/L, and with a response time (RT) of 10.41 ± 0.51 days and a percentage culture response of 77.77 ± 2.77%. Rhizome formation was observed after 8 weeks, with the highest culture response of 36.66 ± 3.33% in the MS basal media with an RT of 43.75 ± 0.50 days. These rhizomes showed a 60% germination rate within 2 weeks and developed into plantlets. The present in vitro regeneration protocol could be used for the large-scale propagation and conservation of A. chasmanthum.


Foods ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1727
Author(s):  
Yu Xi ◽  
Qing Li ◽  
Jiaqi Yan ◽  
Elizabeth Baldwin ◽  
Anne Plotto ◽  
...  

The interactive effects of six maturity stages and refrigerated storage (chilling)/blanching (heating) treatments on the volatile profiles of ripe tomatoes were studied. A total of 42 volatiles were identified, of which 19 compounds had odor activity values equal to or greater than 1. Of those, “green” and “leafy” aroma volatiles were most abundant. Chilling and heating treatments both suppressed overall volatile production, with chilling having the greater impact, regardless of harvest maturity. However, fruit harvested at the turning stage had the least volatile suppression by chilling and heating treatments in comparison with fruit harvested earlier or later, mostly in the fatty acid- and phenylalanine-derived volatiles. Volatiles derived from amino acids were promoted by heat treatment for fruit harvested at all maturities, and those derived from carotenoid and phenylalanine pathways and harvested at advanced harvest maturities were stimulated by chilling treatment. Volatile production is generally believed to be improved by delayed harvest, with vine-ripe being optimum. However, opposite results were observed possibly because the later-harvested fruit had longer exposure to open-field weather stress. The best harvest maturity recommendation is the turning stage where fruit developed abundant volatiles and were least impacted by chilling and heating treatments.


2021 ◽  
Vol 12 ◽  
Author(s):  
Shangguang Du ◽  
Xueyong Huang ◽  
Yali Cai ◽  
Yingbin Hao ◽  
Shengrong Qiu ◽  
...  

Variations in antioxidant compounds were examined in seedlings of two rice cultivars (Qiutianxiaoting and 93-11) exposed to low temperature (4°C) for 0, 12, 36, and 48 h. Antioxidant activity was identified by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) assays. The concentrations of total phenols, flavonoids, chlorophyll, and anthocyanins (ACNs) were determined by spectrophotometry. In addition, high-performance liquid chromatography (HPLC) was used to reveal the changes in phenolic compound concentrations in rice seedlings under chilling treatment. Results showed that antioxidant concentrations and antioxidant activity after chilling treatment were higher in 93-11 compared to Qiutianxiaoting, reaching the highest level at 36 h chilling treatment in 93-11. Phenolic compounds in Qiutianxiaoting decreased between 12 and 36 h but then increased at 48 h, whereas the corresponding levels in 93-11 increased as chilling time increased. Moreover, 10 phenolic compounds were detected and quantified by HPLC, of which gallic acid and caffeic acid tended to only exist in 93-11, whereas rutin was observed only in Qiutianxiaoting. The results of this study could be leveraged to optimize the antioxidant potential of rice in the context of healthy food choices.


2020 ◽  
Vol 71 (12) ◽  
pp. 3653-3663 ◽  
Author(s):  
Kunyang Zhuang ◽  
Jieyu Wang ◽  
Baozhen Jiao ◽  
Chong Chen ◽  
Junjie Zhang ◽  
...  

Abstract Rubisco, which consists of eight large subunits (RBCLs) and eight small subunits (RBCSs), is a major photosynthetic enzyme that is sensitive to chilling stress. However, it is largely unclear how plants maintain high Rubisco content under low temperature conditions. Here, we report that tomato WHIRLY1 (SlWHY1) positively regulates the Rubisco level under chilling stress by directly binding to the promoter region of SlRbcS1, resulting in the activation of SlRbcS1 expression. SlRbcS1-overexpressing lines had higher Rubisco contents and were more resistant to chilling stress compared with the wild type. Quantitative real-time PCR analyses showed that, among the five RbcS genes, only SlRbcS1 expression is up-regulated by chilling treatment. These results indicate that SlWHIRLY1 specifically enhances the levels of SlRbcS1 and confers tolerance to chilling stress. The amino acid sequence of SlRBCS1 shows 92.67% identity with those of another two RBCS proteins and three residues are specifically found in SlRBCS1. However, mutation of these residues to alanine in SlRBCS1 does not influence its function during cold adaptation. Thus, we conclude that high levels of Rubisco, but not the specific residues in SlRBCS1, play important roles in tolerance to chilling stress in tomato.


2020 ◽  
Vol 32 (4) ◽  
pp. 208-213
Author(s):  
Susumu HISAMATSU ◽  
Fujio BABA ◽  
Naoya HAMABE ◽  
Hiroyuki KATSUOKA ◽  
Zentaro INABA

2018 ◽  
Vol 52 (3) ◽  
pp. 39-43
Author(s):  
Soon-Ho Kwon ◽  
Ji-Min Park ◽  
Yang-Gil Kim ◽  
Hae-In Kang ◽  
Da-Bin Yoem ◽  
...  

2018 ◽  
Vol 24 (6) ◽  
pp. 476-486 ◽  
Author(s):  
Muhammad Lubowa ◽  
Shin Y Yeoh ◽  
Azhar M Easa

This study investigated the influence of pregelatinized high-amylose maize starch and chilling treatment on the physical and textural properties of canned rice noodles thermally processed in a retort. Rice noodles were prepared from rice flour partially substituted with pregelatinized high-amylose maize starch (Hylon VII™) in the ratios 0, 5, 10, and 15% (wt/wt). High-amylose maize starch improved the texture and brightness of fresh (not retorted) noodles. Chilling treatment led to significant (P ≤ 0.05) improvement in the texture of fresh noodles at all levels of substitution with high-amylose starch. The highest hardness was recorded at 15% amylose level in chilled nonretorted noodles. Retort processing induced a major loss of quality through water absorption, retort cooking loss, decreased noodle hardness, and lightness. However, the results showed that amylose and chilling treatment positively reduced the impact of retorting. For each level of amylose substitution, a low retort cooking loss and increased noodle hardness were associated with a chilling treatment. For both chilled and nonchilled noodles, retort cooking loss and hardness increased with increasing levels of amylose substitution.


2017 ◽  
Vol 55 (1) ◽  
pp. 7-11
Author(s):  
Nobuyuki OKUDA ◽  
Yuta MIYA ◽  
Tomohiro YANAGI ◽  
Kenzo YAMAGUCHI

2016 ◽  
Vol 85 (2) ◽  
pp. 169-176 ◽  
Author(s):  
Masaji Koshioka ◽  
Taiga Horimoto ◽  
Yoshiyuki Muramatsu ◽  
Satoshi Kubota ◽  
Tamotsu Hisamatsu
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document