scholarly journals Utilization of Tepary Bean for Improvement of Heat Tolerance in Common Bean

HortScience ◽  
2004 ◽  
Vol 39 (4) ◽  
pp. 868A-868 ◽  
Author(s):  
Katy M. Rainey* ◽  
Phillip D. Griffiths

High temperatures (>30°C day and/or >20°C night) in tropical lowlands and production areas in temperate zones reduce yield and quality in common bean (Phaseolus vulgaris L.). Tepary bean (P. acutifolius A. Gray) is a crop adapted to hot arid climates and is grown in the American Southwest and parts of Mexico under temperatures that are too high for pod formation in common bean. Interspecific hybridization may enable transfer of heat tolerance traits from tepary bean to common bean. Twenty-five tepary bean plant introductions (PI) with the ability to set seed under controlled-environment conditions were evaluated under high (35 °C day/32 °C night) and control (27 °C day/24 °C night) temperature treatments during reproductive development. Four accessions (PI 200902, PI 312637, PI 440788, and PI 440789) exhibited normal pod formation and comparatively high yield when exposed to high temperature, while common bean controls displayed zero pod and seed set. These four PIs showed a mean decrease in seed yield of 72.9% from control to high temperature treatment, as compared to 90.3% among all tepary beans. These accessions were hybridized with the dry bean cultivar `ICA Pijao', and the heat-tolerant bean cultivars `Carson' and `CELRK' and breeding line `Cornell 503'. Immature embryos were cultured to obtain interspecific hybrids. Fertility of F1 hybrids and generation of backcrosses are discussed.

2005 ◽  
Vol 130 (1) ◽  
pp. 18-23 ◽  
Author(s):  
K.M. Rainey ◽  
P.D. Griffiths

Yield components of 24 common bean (Phaseolus vulgaris L.) genotypes were evaluated following exposure during reproductive development to four greenhouse day/night temperature treatments (24 °C/21 °C, 27 °C/24 °C, 30 °C/27 °C and 33 °C/30 °C). Genotypes included 12 snap beans, two wax beans, six dry beans, and four common bean accessions; 18 genotypes were previously described as heat-tolerant and three were heat-sensitive controls. The highest temperature treatment reduced seed number, pod number, mean seed weight and seeds/pod an average of 83%, 63%, 47%, and 73%, respectively. A heat susceptibility index (S) measuring yield stability under high temperatures indicated that `Brio', `Carson', `G122', `HB 1880', `HT 20', `HT 38', `Opus', and `Venture' were heat tolerant. Heat-tolerant genotypes displayed differential responses to high temperature, suggesting different genetic control of heat tolerance mechanisms. Genotypes with moderate heat tolerance, including `Barrier' and `Hystyle', showed stable yields in the 30 °C/27 °C treatment only, indicating this regime is optimal for screening common bean materials of unknown heat tolerance. `Haibushi', `Indeterminate Jamaica Red', and `Tío Canela-75' were previously described as heat tolerant but exhibited a heat-sensitive reaction in this study. Heat-sensitive genotypes `Haibushi' and `Labrador' maintained mean seed weight under high temperature. This data will help utilize nonallelic heat tolerance genes in development of bean varieties grown in high temperature environments.


1995 ◽  
Vol 22 (6) ◽  
pp. 935 ◽  
Author(s):  
PJ Stone ◽  
ME Nicolas

Two wheat varieties differing in heat tolerance were exposed to four heat treatments in order to determine if a sudden rise from ca 20-40�C caused a greater reduction of individual kernel mass than a gradual (6�C h-1) rise over the same temperature range. For the heat sensitive variety (Oxley), the reduction of individual kernel mass following sudden heat stress (26%) was greater than that resulting from a gradual heat stress of equivalent thermal time (13%) or equal days of treatment (18%). By contrast, for the heat tolerant variety (Egret), the reduction of individual kernel mass following rapid exposure to heat stress (12%) was not significantly greater than that caused by a gradual treatment of equal days duration (10%). Nevertheless, for Egret, sudden heat stress significantly reduced mature kernel mass compared with high temperature treatment of equivalent thermal time (6%). We conclude that heat acclimation may help to mitigate wheat yield losses due to high temperature and that the ability to acclimate to high temperature varies between wheat genotypes. Comparison of wheat varieties for yield tolerance to high temperature should therefore occur under conditions that allow gradual acclimation to elevated temperature.


2020 ◽  
Vol 225 ◽  
pp. 106862 ◽  
Author(s):  
Qingzhen Guo ◽  
Haijian Su ◽  
Jiawei Liu ◽  
Qian Yin ◽  
Hongwen Jing ◽  
...  

Plant Disease ◽  
2008 ◽  
Vol 92 (12) ◽  
pp. 1695-1700 ◽  
Author(s):  
A. Murillo-Williams ◽  
G. P. Munkvold

Fusarium verticillioides causes seedling decay, stalk rot, ear rot, and mycotoxin contamination (primarily fumonisins) in maize. Systemic infection of maize plants by F. verticillioides can lead to kernel infection, but the frequency of this phenomenon has varied widely among experiments. Variation in the incidence of systemic infection has been attributed to environmental factors. In order to better understand the influence of environment, we investigated the effect of temperature on systemic development of F. verticillioides during vegetative and reproductive stages of plant development. Maize seeds were inoculated with a green fluorescent protein-expressing strain of F. verticillioides, and grown in growth chambers under three different temperature regimes. In the vegetative-stage and reproductive-stage experiments, plants were evaluated at tasseling (VT stage), and at physiological maturity (R6 stage), respectively. Independently of the temperature treatment, F. verticillioides was reisolated from nearly 100% of belowground plant tissues. Frequency of reisolation of the inoculated strain declined acropetally in aboveground internodes at all temperature regimes. At VT, the high-temperature treatment had the highest systemic development of F. verticillioides in aboveground tissues. At R6, incidence of systemic infection was greater at both the high- and low-temperature regimes than at the average-temperature regime. F. verticillioides was isolated from higher internodes in plants at R6, compared to stage VT. The seed-inoculated strain was recovered from kernels of mature plants, although incidence of kernel infection did not differ significantly among treatments. During the vegetative growth stages, temperature had a significant effect on systemic development of F. verticillioides in stalks. At R6, the fungus reached higher internodes in the high-temperature treatment, but temperature did not have an effect on the incidence of kernels (either symptomatic or asymptomatic) or ear peduncles infected with the inoculated strain. These results support the role of high temperatures in promoting systemic infection of maize by F. verticillioides, but plant-to-seed transmission may be limited by other environmental factors that interact with temperature during the reproductive stages.


Sign in / Sign up

Export Citation Format

Share Document