scholarly journals Differential Response of Common Bean Genotypes to High Temperature

2005 ◽  
Vol 130 (1) ◽  
pp. 18-23 ◽  
Author(s):  
K.M. Rainey ◽  
P.D. Griffiths

Yield components of 24 common bean (Phaseolus vulgaris L.) genotypes were evaluated following exposure during reproductive development to four greenhouse day/night temperature treatments (24 °C/21 °C, 27 °C/24 °C, 30 °C/27 °C and 33 °C/30 °C). Genotypes included 12 snap beans, two wax beans, six dry beans, and four common bean accessions; 18 genotypes were previously described as heat-tolerant and three were heat-sensitive controls. The highest temperature treatment reduced seed number, pod number, mean seed weight and seeds/pod an average of 83%, 63%, 47%, and 73%, respectively. A heat susceptibility index (S) measuring yield stability under high temperatures indicated that `Brio', `Carson', `G122', `HB 1880', `HT 20', `HT 38', `Opus', and `Venture' were heat tolerant. Heat-tolerant genotypes displayed differential responses to high temperature, suggesting different genetic control of heat tolerance mechanisms. Genotypes with moderate heat tolerance, including `Barrier' and `Hystyle', showed stable yields in the 30 °C/27 °C treatment only, indicating this regime is optimal for screening common bean materials of unknown heat tolerance. `Haibushi', `Indeterminate Jamaica Red', and `Tío Canela-75' were previously described as heat tolerant but exhibited a heat-sensitive reaction in this study. Heat-sensitive genotypes `Haibushi' and `Labrador' maintained mean seed weight under high temperature. This data will help utilize nonallelic heat tolerance genes in development of bean varieties grown in high temperature environments.

2005 ◽  
Vol 130 (5) ◽  
pp. 700-706 ◽  
Author(s):  
Katy M. Rainey ◽  
Phillip D. Griffiths

The genetic basis for heat tolerance during reproductive development in snap bean was investigated in a heat-tolerant × heat-sensitive common bean cross. Parental, F1, F2, and backcross generations of a cross between the heat-tolerant snap bean breeding line `Cornell 503' and the heat-sensitive wax bean cultivar Majestic were grown in a high-temperature controlled environment (32 °C day/28 °C night), initiated prior to anthesis and continued through plant senescence. During flowering, individual plants of all generations were visually rated and scored for extent of abscission of reproductive organs. The distribution of abscission scores in segregating generations (F2 and backcrosses) indicated that a high rate of abscission in response to heat stress was controlled by a single recessive gene from `Majestic'. Abscission of reproductive organs is the primary determinant of yield under heat stress in many annual grain legumes; this is the first known report of single gene control of this reaction in common bean or similar legumes. Generation means analysis indicated that genetic variation among generations for pod number under heat stress was best explained by a six-parameter model that includes nonallelic interaction terms, perhaps the result of the hypothetical abscission gene interacting with other genes for pod number in the populations. A simple additive/dominance model accounted for genetic variance for seeds per pod. Dominance [h] and epistatic dominance × dominance [l] genetic parameters for yield components under high temperatures were the largest in magnitude. Results suggest `Cornell 503' can improve heat tolerance in sensitive cultivars, and heat tolerance in common bean may be influenced by major genes.


HortScience ◽  
2004 ◽  
Vol 39 (4) ◽  
pp. 868A-868 ◽  
Author(s):  
Katy M. Rainey* ◽  
Phillip D. Griffiths

High temperatures (>30°C day and/or >20°C night) in tropical lowlands and production areas in temperate zones reduce yield and quality in common bean (Phaseolus vulgaris L.). Tepary bean (P. acutifolius A. Gray) is a crop adapted to hot arid climates and is grown in the American Southwest and parts of Mexico under temperatures that are too high for pod formation in common bean. Interspecific hybridization may enable transfer of heat tolerance traits from tepary bean to common bean. Twenty-five tepary bean plant introductions (PI) with the ability to set seed under controlled-environment conditions were evaluated under high (35 °C day/32 °C night) and control (27 °C day/24 °C night) temperature treatments during reproductive development. Four accessions (PI 200902, PI 312637, PI 440788, and PI 440789) exhibited normal pod formation and comparatively high yield when exposed to high temperature, while common bean controls displayed zero pod and seed set. These four PIs showed a mean decrease in seed yield of 72.9% from control to high temperature treatment, as compared to 90.3% among all tepary beans. These accessions were hybridized with the dry bean cultivar `ICA Pijao', and the heat-tolerant bean cultivars `Carson' and `CELRK' and breeding line `Cornell 503'. Immature embryos were cultured to obtain interspecific hybrids. Fertility of F1 hybrids and generation of backcrosses are discussed.


Author(s):  
Sherzod Nigmatullayevich Rajametov ◽  
Eun Young Yang ◽  
Hyo Bong Jeong ◽  
Myeong Cheoul Cho ◽  
Soo-Young Chae ◽  
...  

High temperature seriously effects on plant vegetative and reproductive development and reduces productivity of plants, while to increase crop yield is the main target in most crop heat stress tolerance improvement breeding programs, not just survival, under high temperature. Our aim was to compare temperature stress tolerance in two commercial tomato cultivars “Dafnis” (big fruit size) and “Minichal” (cherry fruit size) to develop early screening methods and find out survival rate and physiological responses of tomato cultivars on high temperature (40°C and within 70% RH, day/night) in 4-5 true leaf seedling stage- (4LS) and identifies the linkage of heat tolerance with fruit set and leaf heat damage rates (LHD) in seedling stage with subsequent vegetative traits at recovery. Results showed that heat stress significantly affected on physiological-chemical and vegetative parameters of seedlings regardless of tomato cultivars. Survival and the threshold level of high temperature tolerance in the seedlings of cv. “Dafnis” and “Minichal” were identified on days 7 and 9, respectively. Our findings revealed that photosynthesis (PN, Gs, Ci, Tr) parameters were increased and CHL content persisted steady value in cv. “Minichal” during heat stress period, however EC and RPL rates were lower than cv. “Dafnis”. Heat stress reduced the SFW in both cultivars in seedling stage, but PH and RFW were significantly decreased in the heat tolerant cv. “Minichal”, whereas this parameters were not significantly ranged in the heat susceptible cv. “Dafnis”. Additionally, there no found linkage between vegetative parameters with decreasing of PN and CHL rates during HT of seedlings. In plants of cv. “Minichal” with LHD-25, 50 and 75% were no found significant differences in PH, whereas in cv. “Dafnis” significant differences were determined in plants with LHD-75%, and the significant differences in rates of SFW and RFW were observed in plants of cv. “Dafnis” having LHD-75% for 28 days of recovery at NT condition. Taken together, we concluded that heat stress affected on physiological parameters regardless of tolerance level, and to identify heat tolerant genotype in tomato breeding program, screening and selection genotypes have to be evaluated at the vegetative and reproductive stages with consideration fruit size types. Since we could not find linkage between heat tolerances in seedling stage with fruit set at the reproductive stage and fruit set cannot be used as a general predictor of heat tolerance.


Author(s):  
V. Jaldhani ◽  
D. Sanjeeva Rao ◽  
P. Beulah ◽  
B. Srikanth ◽  
P. R. Rao ◽  
...  

Aims: To assess heat-induced PSII damage and efficiency in eight promising backcross introgression lines (BC2F6) of KMR-3R/N22 possessing qHTSF1.1 and qHTSF4.1. Study Design:  Randomized Complete Block Design (RCBD) with three replications. Place and Duration of Study: ICAR-Indian Institute of Rice Research, Hyderabad India during wet/rainy (Kharif) season 2018. Methodology: Eight ILs (BC2F6) and parents were evaluated for heat tolerance. The high- temperature stress was imposed by enclosing the crop with a poly cover tent (Polyhouse) just before the anthesis stage. The fluorescence parameters viz., maximum efficiency of PSII photochemistry (Fv/Fm), Electron transport rate (ETR), effective PSII quantum yield (ΦPSII), coefficient of photochemical quenching (qP) and coefficient of non-photochemical quenching (qN) were measured under ambient and high-temperature stress. Results: The heat-tolerance potential of ILs was assessed in terms of PSII activity. The results indicated that significant differences were observed between treatments (T), genotypes (G) and the interaction between T × G.  The physiological basis of introgressed QTLs controls the spikelet fertility by maintaining the productive and adaptive strategies in heat-tolerant QTL introgressed lines with stable photosynthetic apparatus (PSII) under high-temperature stress. Conclusion: The Fv/Fm ratio denotes the maximum quantum yield of PSII. The heat-tolerant QTL introgressed lines exhibited stable photosynthetic apparatus (PSII) and noted better performance under high-temperature stress. They may be used as donors for fluorescence traits in breeding rice for high-temperature tolerance.


Author(s):  
Syed Bilal Hussain ◽  
Ali Bakhsh ◽  
Muhammad Zubair

A comparison was made of the physiological and morphological differences between Inqlab-91 (hexaploid) and Langdon (tetralpoid) wheat genotypes in response to high temperature stress applied at third leaf stage of growth. Electrolytes leakage technique was used to detect differences in the heat sensitivities of leaves of Inqlab-91 and Langdon. This method showed that at both 35 or 40°C Inqlab-91 was more heat tolerant than Langdon.


2020 ◽  
Vol 47 (5) ◽  
pp. 440 ◽  
Author(s):  
Syed Adeel Zafar ◽  
Amjad Hameed ◽  
Muhammad Ashraf ◽  
Abdus Salam Khan ◽  
Zia-ul- Qamar ◽  
...  

Climatic variations have increased the occurrence of heat stress during critical growth stages, which negatively affects grain yield in rice. Plants adapt to harsh environments, and particularly high-temperature stress, by regulating their physiological and biochemical processes, which are key tolerance mechanisms. The identification of heat-tolerant rice genotypes and reliable selection indices are crucial for rice improvement programs. Here, we evaluated the response of a rice mutant population for high-temperature stress at the seedling and reproductive stages based on agronomic, physiological and molecular indices. Estimates of variance components revealed significant differences (P < 0.001) among genotypes, treatments and their interactions for almost all traits. The principal component analysis showed significant diversity among genotypes and traits under high-temperature stress. The mutant HTT-121 was identified as the most heat-tolerant mutant with higher grain yield, panicle fertility, cell membrane thermo-stability (CMTS) and antioxidant enzyme levels under heat stress. Various seedling-based morpho-physiological traits (leaf fresh weight, relative water contents, malondialdehyde, CMTS) and biochemical traits (superoxide dismutase, catalase and hydrogen peroxide) explained variations in grain yield that could be used as selection indices for heat tolerance in rice during early growth. Notably, heat-sensitive mutants accumulated reactive oxygen species, reduced catalase activity and upregulated OsSRFP1 expression under heat stress, suggesting their key roles in regulating heat tolerance in rice. The heat-tolerant mutants identified in this study could be used in breeding programs and to develop mapping populations to unravel the underlying genetic architecture for heat-stress adaptability.


2015 ◽  
Vol 140 (2) ◽  
pp. 144-150 ◽  
Author(s):  
Magaji G. Usman ◽  
Mohd Y. Rafii ◽  
Mohd Razi Ismail ◽  
Mohammad Abdul Malek ◽  
Mohammad Abdul Latif

Experiments were carried out to study the mechanisms for heat tolerance in chili pepper (Capsicum annuum). To assess these mechanisms, six genotypes were evaluated for cellular membrane thermostability (CMT) and for HSP70 gene expression. The plants were grown in an experimental plant growth chamber. The mean value of CMT indicates that membrane integrity was not damaged by the high temperature treatment (50 °C) in most of the genotypes. The genotypes were classified as follows: heat-tolerant (greater than 60%), moderately tolerant (30% to 60%), and susceptible (less than 30%). The heat-tolerant plants recorded the highest CMTs at 89.27%, 88.03%, and 85.10% for AVPP0702, AVPP0116, and AVPP9905, respectively, which might be the reason for the change in their cell membrane thermostability. AVPP9703 and AVPP0002 showed CMTs of 15.87% and 18.43%, which might indicate their sensitivity to heat stress. Heat shock protein 70 kDa was identified and found to be differentially expressed under the heat stress. Under heat stress, significantly increased levels of the HSP70 gene were detected after 2 h of temperature treatment at 42 °C, which indicated that this gene is quickly and sharply induced by heat shock. This was true for all genotypes tested, which were significantly up-regulated by more than 36.9-, 7.10-, 3.87-, and 3-fold for AVPP0702, AVPP0116, AVPP0002, and AVPP9703, respectively. The HSP70 gene was found to be significantly down-regulated under heat stress in ‘Kulai’. AVPP0702, AVPP9905, and AVPP0116 could be considered as heat-tolerant genotypes, whereas ‘Kulai’ and AVPP9703 were found to be heat-sensitive genotypes in this investigation.


2010 ◽  
Vol 135 (6) ◽  
pp. 521-532 ◽  
Author(s):  
Charles J. Wasonga ◽  
Marcial A. Pastor-Corrales ◽  
Timothy G. Porch ◽  
Phillip D. Griffiths

Common bean rust disease (caused by Uromyces appendiculatus) and high temperatures (heat stress) limit snap bean (Phaseolus vulgaris) production in many tropical and temperate regions. We have developed snap bean lines combining broad-spectrum rust resistance with heat tolerance for tropical agroecosystems. Eight breeding populations were developed by hybridizing BelJersey-RR-15 and BelFla-RR-1 (each possessing the Ur-4 and Ur-11 rust resistance genes) and the heat-tolerant snap bean breeding lines HT601, HT603, HT608, and HT611. F2–F4 generations of the populations were evaluated under greenhouse conditions and selected for heat tolerance while simultaneously selecting for the rust resistance genes Ur-4 and Ur-11. Three heat-tolerant F5 lines, which were homozygous for Ur-4 and Ur-11 genes, were selected together with a rust-resistant but heat-sensitive control. These and 12 cultivars adapted to different geographical regions were evaluated for their reaction to rust and yield at six contrasting field sites in eastern Africa and their response to high temperature verified in Puerto Rico. Rust incidence and severity was high at three of the trial sites in eastern Africa. Two of the 12 cultivars were resistant to rust at most of these sites, and three of the four breeding lines were resistant at all sites. The Ur-11 gene effectively conferred rust resistance at all sites. Yield in Puerto Rico was strongly correlated (R2 = 0.71, P < 0.001) with that of the hottest site in eastern Africa, highlighting the similarity in genotypic response to high temperatures at the two distinct sites. The newly developed rust-resistant and heat-tolerant breeding lines showed stable yield at the eastern Africa sites with contrasting mean temperatures compared with the cultivars presently grown in the region. Two of these lines, HT1 and HT2, were confirmed to be homozygous for Ur-4 and Ur-11 and with high heat tolerance under both greenhouse and field environments. This research validates the effectiveness of targeted rust resistance gene combinations for tropical environments and the effective selection of high temperature tolerance traits correlating across multiple environments. The breeding lines HT1 and HT2 developed in this research could be used to improve snap beans for the tropics and other environments with similar constraints.


2020 ◽  
Vol 53 (3) ◽  
pp. 255-265
Author(s):  
Emine KARADEMIR ◽  
C. KARADEMIR ◽  
B. KOLAY ◽  
V. SEZENER ◽  
H. BASAL

The objective of this study was to determine cotton (Gossypium ssp.) germplasm for heat tolerance under normal and late planting time. For this aiming 200 cotton genotypes and five check varieties (Gloria, SG 125, Flash, Ozbek 105 and Candia) were evaluated under two different temperature regimes and experiments were conducted according to the augmented design with four blocks. Field studies were carried out at the GAP International Agricultural Research and Training Center’s experimental area in Diyarbakır, Turkey, in 2016 cotton growing season. In the study heat susceptibility index was used for discriminate to the genotypes for heat tolerance. Genotypes were classified into four groups based on the heat susceptibility index. The results of this study indicated that five cotton genotypes (TAM 139-17 ELS, CIM-240, Haridost, MNH-990 and AzGR-11835) were in highly heat tolerant, 28 genotypes were found heat tolerant, 56 genotypes were in the moderately heat tolerant and other 120 genotypes were observed susceptible for heat tolerance. Based on the heat susceptibility index, five cotton genotypes can be used as parent for heat tolerance improvement in the cotton breeding program where high temperature is a limiting factor for seed cotton yield.


Sign in / Sign up

Export Citation Format

Share Document