scholarly journals Activity of Cell Wall-associated Enzymes in Cold-stored Tomato Fruit

HortScience ◽  
2005 ◽  
Vol 40 (4) ◽  
pp. 1131A-1131
Author(s):  
A. Rugkong ◽  
J.K.C. Rose ◽  
C.B. Watkins

Tomato fruit (Solanum lycopersicon L.) can develop mealiness and enhanced softening when exposed to chilling temperatures during storage, but the involvement of cell wall-associated enzymes in chilling injury development is not well understood. To study this aspect of injury development, we have exposed breaker stage tomato cv. Trust fruit to a chilling temperature of 3 °C for 0, 7, 14, and 21 days followed by storage at 20 °C for 12 days. Ethylene production was not affected by storage except after 21 days, where production was greater at 20 °C. Exposure of fruit to chilling temperatures delayed the ripening-related color change (chroma and hue) and initially increased compression values, but percentage of extractable juice was not affected consistently. Increased polygalacturonase activity during ripening was reduced by about 50% after 7 days at 3 °C, and further inhibited with increasing storage periods. In contrast, the activities of pectin methylesterase and α-galactosidase were not significantly affected by the cold treatments. β-Galactosidase activity was greater in all chilled fruit compared with fruit ripened at harvest, whereas endo-β-1,4-glucanase activity was lower after 21 days at 3 °C. These results will be compared with equivalent changes in the activities of cell wall enzymes that are associated with wooliness development in chilling-injured peach fruit.

HortScience ◽  
2006 ◽  
Vol 41 (3) ◽  
pp. 494C-494
Author(s):  
Adirek Rugkong ◽  
Jocelyn K.C. Rose ◽  
Chris B. Watkins

Tomato fruit (Solanum lycopersicum L.) can develop mealiness and enhanced softening when exposed to chilling temperatures during storage, but the involvement of cell wall-associated enzymes in chilling injury development is not well understood. To study this aspect of injury development, we have exposed breaker-stage `Trust' tomato fruit to a chilling temperature of 3 °C for 0, 7, 14, and 21 days followed by storage at 20 °C for 12 days. Ethylene production was not affected by storage except after 21 days where production was greater at 20 °C. Exposure of fruit to chilling temperatures delayed the ripening-related color change (chroma and hue) and initially increased compression values, but percent extractable juice was not affected consistently. Increased polygalacturonase (PG) activity during ripening was reduced by about 50% after 7 days at 3 °C, and further inhibited with increasing storage periods. In contrast, the activities of pectin methylesterase (PME) and α-galactosidase were not significantly affected by the cold treatments. β-Galactosidase activity was greater in all chilled fruit compared with fruit ripened at harvest, whereas endo-β-1,4-glucanase activity was lower after 21 days at 3 °C. In chilled fruits, transcript accumulations for PG, PME (PME1.9), and expansin (Expt.1) were lower during storage at 20 °C compared with those of nonchilled fruits. Transcript accumulation for β-galactosidase (TBG4) was affected only at 14 days of cold storage, when transcript accumulation decreased. Cold treatment increased transcript accumulation of endo-β-1,4-glucanase (Cel1) after 12 days at 20 °C and decreased transcript accumulation after 7 days and 21 days at 21 °C. Cell wall analyses to investigate relationships among enzyme activities and cell wall disassembly are ongoing.


1964 ◽  
Vol 17 (1) ◽  
pp. 147 ◽  
Author(s):  
TL Lewis ◽  
M Workman

Exposure to O�C for 4 weeks caused a threefold increase in cell membrnno permeability of mature-green tomato fruits (susceptible to chilling injury) hut had no effect on that of cabbage leaves (not susceptible). While tomato fruits chilled for 12 days lost two-thirds of their capacity to esterify phosphate at 20�0, a steady rise in this capacity occurred during chilling of cabbage leaves for 5 weeks. In tomato fruits the rate of phosphate esterification at the chilling temperature fell in 12 days to about one-half of the rate at the commencement of chilling .. It is suggested that the characteristic symptoms of chilling injury in mature-green tomato fruits, viz. increased susceptibility to fungal attack and loss of the capacity to ripen normally. may result from an energy deficit caused by a chilling. induced reduction in the phosphorylative capacity of the tissue.


1996 ◽  
Vol 121 (3) ◽  
pp. 525-530
Author(s):  
Georges T. Dodds ◽  
Leif Trenholm ◽  
Chandra A. Madramootoo

In a 2-year study (1993-1994), `New Yorker' tomato (Lycopersicon esculentum Mill.) plants grown in field lysimeters were subjected to four watertable depth (WTD) treatments (0.3, 0.6, 0.8, and 1.0 m from the soil surface) factorially combined with 5 potassium/calcium fertilization combinations. Mature-green fruit from four replicates of each treatment were stored at 5C for 21 days, and fruit color was monitored with a tristimulus colorimeter. Fruit were subsequently allowed to ripen at 20C for 10 days, at which time chilling injury was assessed on the basis of delayed ripening and area of lesions. Potassium and calcium applied in the field had no effect on chilling tolerance of the fruit. In the drier year (1993), shallower WTD treatments generally yielded fruit that changed color less during chilling and were more chilling-sensitive based on delayed ripening. In the wetter year, differences in color change and chilling tolerance between WTD, if any, were small. Over both years, lesion area varied with WTD, but not in a consistent manner. Based on these results, we suggest that differences in water availability should be considered when studying tomato fruit chilling.


2013 ◽  
Vol 40 (5) ◽  
pp. 449 ◽  
Author(s):  
Gabriela L. Müller ◽  
Claudio O. Budde ◽  
Martin A. Lauxmann ◽  
Agustina Triassi ◽  
Carlos S. Andreo ◽  
...  

To extend fruit market life, tomatoes are harvested before red ripe and kept at temperatures below optimum (20°C). In this work, Micro-Tom tomatoes stored at 20°C (normal ripening) were compared with those stored at 15°C or 4°C (chilling injury inducer) for 7 days. In contrast to 4°C, storage at 15°C delayed ripening with the benefit of not enhancing oxidative metabolism and of enabling ripening upon being transferred to 20°C. The transcriptional expression profile of enzymes related to cell wall metabolism was compared at the three temperatures. Although endo-β-1,4-glucanase (Cel1), which is associated with fruit decay, was largely increased after removal from 4°C storage, its expression was not modified in fruits stored at 15°C. Enhanced transcriptional expression of xyloglucan endotransgylcosylase/hydrolases (XTHs) XTH1, –2, –10 and –11, and of two β-xylosidases (Xyl1–2) was detected in fruits stored at 15°C with respect to those at 20°C. Following 2 days at 20°C, these transcripts remained higher in fruits stored at 15°C and XHT3 and –9 also increased. Ethylene evolution was similar in fruits kept at 15°C and 20°C; thus, the changes in the transcript profile and fruit properties between these treatments may be under the control of factors other than ethylene.


2021 ◽  
Vol 12 ◽  
Author(s):  
Donald A. Hunter ◽  
Nathanael J. Napier ◽  
Zoe A. Erridge ◽  
Ali Saei ◽  
Ronan K. Y. Chen ◽  
...  

Tomato fruit stored below 12°C lose quality and can develop chilling injury upon subsequent transfer to a shelf temperature of 20°C. The more severe symptoms of altered fruit softening, uneven ripening and susceptibility to rots can cause postharvest losses. We compared the effects of exposure to mild (10°C) and severe chilling (4°C) on the fruit quality and transcriptome of ‘Angelle’, a cherry-type tomato, harvested at the red ripe stage. Storage at 4°C (but not at 10°C) for 27 days plus an additional 6 days at 20°C caused accelerated softening and the development of mealiness, both of which are commonly related to cell wall metabolism. Transcriptome analysis using RNA-Seq identified a range of transcripts encoding enzymes putatively involved in cell wall disassembly whose expression was strongly down-regulated at both 10 and 4°C, suggesting that accelerated softening at 4°C was due to factors unrelated to cell wall disassembly, such as reductions in turgor. In fruit exposed to severe chilling, the reduced transcript abundances of genes related to cell wall modification were predominantly irreversible and only partially restored upon rewarming of the fruit. Within 1 day of exposure to 4°C, large increases occurred in the expression of alternative oxidase, superoxide dismutase and several glutathione S-transferases, enzymes that protect cell contents from oxidative damage. Numerous heat shock proteins and chaperonins also showed large increases in expression, with genes showing peak transcript accumulation after different times of chilling exposure. These changes in transcript abundance were not induced at 10°C, and were reversible upon transfer of the fruit from 4 to 20°C. The data show that genes involved in cell wall modification and cellular protection have differential sensitivity to chilling temperatures, and exhibit different capacities for recovery upon rewarming of the fruit.


2008 ◽  
Vol 14 (4) ◽  
pp. 385-391 ◽  
Author(s):  
G.A. Manganaris ◽  
M. Vasilakakis ◽  
I. Mignani ◽  
A. Manganaris

A comparative study between melting flesh peach fruit (Prunus persica L. Batsch cvs. Royal Glory and Morettini No 2) with contrasting tissue firmness during their on-tree ripening was conducted. Such fruit were cold stored (0 °C) for 4 and 6 weeks, and subsequently transferred at 25 °C (shelf life) for up to 5 days and evaluated for quality attributes and cell wall physicochemical properties. Data were partly unexpected, since fruit of the soft cultivar (Morettini No 2) were characterized by lower exo- and endo-PG activity, lower amounts of ethylene evolution, as well as higher amounts of endogenous calcium bound in the cell wall compared to fruit of the firmer cultivar (Royal Glory). These differences may be attributed to the incidence of chilling injury symptoms, evident as loss of juiciness in Morettini No 2 fruit, while Royal Glory fruit were characterized by acceptable appearance and eating quality even after 6 weeks cold storage plus 5 days shelf life, as the fruit softened gradually without cell rupture. Overall results showed that no direct relationship between cell wall physicochemical properties and sensory attributes can be established, indicating the complexity of peach fruit ripening. Since fruit of both cultivars presented similar tissue firmness after 5 days shelf life an attempt to distinguish normal peach fruit softening from cell rupture-chilling injury also has been made in the current study.


1992 ◽  
Vol 117 (6) ◽  
pp. 930-933 ◽  
Author(s):  
M. Darlene Mercer ◽  
Doyle A. Smittle

`Gemini II' cucumber (Cucumis sativus L.) fruits were stored for 2, 4, or 6 days at 5 and 6C in 1989 and for 5 days at SC or 10 days at 3C in 1990. Chilling injury (CI) symptoms were rated after 2 to 4 days at 25C. Cell wall polysaccharide concentrations in the peels and in injured and noninjured portions of the peels were determined only in 1990. High CO2 and low O2 delayed the onset of CI symptoms, but did not prevent symptom development. Chilling injury symptoms increased with longer exposure to chilling temperatures. Solubilization of cell wall polysaccharides was associated with development of CI symptoms. Variations in low methoxyl pectinates accounted for 70% of the variation in CI.


Plant Biology ◽  
2013 ◽  
Vol 15 (6) ◽  
pp. 1025-1032 ◽  
Author(s):  
B. Wen ◽  
A. Ström ◽  
A. Tasker ◽  
G. West ◽  
G. A. Tucker

1997 ◽  
Vol 122 (1) ◽  
pp. 100-106 ◽  
Author(s):  
Najib El Assi ◽  
Donald J. Huber ◽  
Jeffery K. Brecht

Mature green and pink tomato (Lycopersicon esculentum Mill.) fruit were subjected to ionizing irradiation in the range of 0.7 to 2.2 kGy from gamma-or X-ray sources. Firmness of whole fruit and pericarp tissue, pericarp electrolyte leakage, and pericarp cell wall hydrolase activities were measured following irradiation and during postirradiation ripening at 20 °C. Irradiation-induced softening was evident in mature-green and pink fruit within hours following irradiation, and differences between irradiated and control fruit persisted throughout postirradiation storage. Trends of firmness loss were much more consistent and showed much greater dose dependency in pericarp tissue than whole fruit. Irradiation enhanced electrolyte efflux in fruit of both maturity classes. Fruit irradiated at the mature-green stage softened during postirradiation storage but exhibited an apparently irreversible suppression in polygalacturonase activity, with levels remaining <10% of those of nonirradiated fruit. Polygalacturonase activity was less strongly affected in irradiated pink fruit than in mature-green fruit, but activity remained reduced relative to the controls. Pectinmethylesterase and β-galactosidase activities were significantly enhanced in irradiated fruit of both ripening stages in the early period following irradiation, but reductions were noted after prolonged storage.


Sign in / Sign up

Export Citation Format

Share Document