cell wall disassembly
Recently Published Documents


TOTAL DOCUMENTS

35
(FIVE YEARS 11)

H-INDEX

14
(FIVE YEARS 3)

2021 ◽  
Vol 23 (1) ◽  
pp. 243
Author(s):  
Tong Ning ◽  
Chengjie Chen ◽  
Ganjun Yi ◽  
Houbin Chen ◽  
Yudi Liu ◽  
...  

Though numerous studies have focused on the cell wall disassembly of bananas during the ripening process, the modification of homogalacturonan (HG) during fruit development remains exclusive. To better understand the role of HGs in controlling banana fruit growth and ripening, RNA-Seq, qPCR, immunofluorescence labeling, and biochemical methods were employed to reveal their dynamic changes in banana peels during these processes. Most HG-modifying genes in banana peels showed a decline in expression during fruit development. Four polygalacturonase and three pectin acetylesterases showing higher expression levels at later developmental stages than earlier ones might be related to fruit expansion. Six out of the 10 top genes in the Core Enrichment Gene Set were HG degradation genes, and all were upregulated after softening, paralleled to the significant increase in HG degradation enzyme activities, decline in peel firmness, and the epitope levels of 2F4, CCRC-M38, JIM7, and LM18 antibodies. Most differentially expressed alpha-1,4-galacturonosyltransferases were upregulated by ethylene treatment, suggesting active HG biosynthesis during the fruit softening process. The epitope level of the CCRC-M38 antibody was positively correlated to the firmness of banana peel during fruit development and ripening. These results have provided new insights into the role of cell wall HGs in fruit development and ripening.


2021 ◽  
Vol 22 (18) ◽  
pp. 10008
Author(s):  
Sebastian A. Molinett ◽  
Juan F. Alfaro ◽  
Felipe A. Sáez ◽  
Sebastian Elgueta ◽  
María A. Moya-León ◽  
...  

Hydrogen sulfide (H2S) plays several physiological roles in plants. Despite the evidence, the role of H2S on cell wall disassembly and its implications on fleshy fruit firmness remains unknown. In this work, the effect of H2S treatment on the shelf-life, cell wall polymers and cell wall modifying-related gene expression of Chilean strawberry (Fragaria chiloensis) fruit was tested during postharvest storage. The treatment with H2S prolonged the shelf-life of fruit by an effect of optimal dose. Fruit treated with 0.2 mM H2S maintained significantly higher fruit firmness than non-treated fruit, reducing its decay and tripling its shelf-life. Additionally, H2S treatment delays pectin degradation throughout the storage period and significantly downregulated the expression of genes encoding for pectinases, such as polygalacturonase, pectate lyase, and expansin. This evidence suggests that H2S as a gasotransmitter prolongs the post-harvest shelf-life of the fruit and prevents its fast softening rate by a downregulation of the expression of key pectinase genes, which leads to a decreased pectin degradation.


2021 ◽  
Vol 12 ◽  
Author(s):  
Donald A. Hunter ◽  
Nathanael J. Napier ◽  
Zoe A. Erridge ◽  
Ali Saei ◽  
Ronan K. Y. Chen ◽  
...  

Tomato fruit stored below 12°C lose quality and can develop chilling injury upon subsequent transfer to a shelf temperature of 20°C. The more severe symptoms of altered fruit softening, uneven ripening and susceptibility to rots can cause postharvest losses. We compared the effects of exposure to mild (10°C) and severe chilling (4°C) on the fruit quality and transcriptome of ‘Angelle’, a cherry-type tomato, harvested at the red ripe stage. Storage at 4°C (but not at 10°C) for 27 days plus an additional 6 days at 20°C caused accelerated softening and the development of mealiness, both of which are commonly related to cell wall metabolism. Transcriptome analysis using RNA-Seq identified a range of transcripts encoding enzymes putatively involved in cell wall disassembly whose expression was strongly down-regulated at both 10 and 4°C, suggesting that accelerated softening at 4°C was due to factors unrelated to cell wall disassembly, such as reductions in turgor. In fruit exposed to severe chilling, the reduced transcript abundances of genes related to cell wall modification were predominantly irreversible and only partially restored upon rewarming of the fruit. Within 1 day of exposure to 4°C, large increases occurred in the expression of alternative oxidase, superoxide dismutase and several glutathione S-transferases, enzymes that protect cell contents from oxidative damage. Numerous heat shock proteins and chaperonins also showed large increases in expression, with genes showing peak transcript accumulation after different times of chilling exposure. These changes in transcript abundance were not induced at 10°C, and were reversible upon transfer of the fruit from 4 to 20°C. The data show that genes involved in cell wall modification and cellular protection have differential sensitivity to chilling temperatures, and exhibit different capacities for recovery upon rewarming of the fruit.


2021 ◽  
Vol 12 ◽  
Author(s):  
Débora Pagliuso ◽  
Adriana Grandis ◽  
Cristiane Ribeiro de Sousa ◽  
Amanda Pereira de Souza ◽  
Carlos Driemeier ◽  
...  

Cellulosic ethanol is an alternative for increasing the amount of bioethanol production in the world. In Brazil, sugarcane leads the bioethanol production, and to improve its yield, besides bagasse, sugarcane straw is a possible feedstock. However, the process that leads to cell wall disassembly under field conditions is unknown, and understanding how this happens can improve sugarcane biorefinery and soil quality. In the present work, we aimed at studying how sugarcane straw is degraded in the field after 3, 6, 9, and 12 months. Non-structural and structural carbohydrates, lignin content, ash, and cellulose crystallinity were analyzed. The cell wall composition was determined by cell wall fractionation and determination of monosaccharide composition. Non-structural carbohydrates degraded quickly during the first 3 months in the field. Pectins and lignin remained in the plant waste for up to 12 months, while the hemicelluloses and cellulose decreased 7.4 and 12.4%, respectively. Changes in monosaccharide compositions indicated solubilization of arabinoxylan (xylose and arabinose) and β-glucans (β-1,3 1,4 glucan; after 3 months) followed by degradation of cellulose (after 6 months). Despite cellulose reduction, the xylose:glucose ratio increased, suggesting that glucose is consumed faster than xylose. The degradation and solubilization of the cell wall polysaccharides concomitantly increased the level of compounds related to recalcitrance, which led to a reduction in saccharification and an increase in minerals and ash contents. Cellulose crystallinity changed little, with evidence of silica at the latter stages, indicating mineralization of the material. Our data suggest that for better soil mineralization, sugarcane straw must stay in the field for over 1 year. Alternatively, for bioenergy purposes, straw should be used in less than 3 months.


2021 ◽  
Vol 22 (12) ◽  
pp. 6294
Author(s):  
Ricardo I. Castro ◽  
Ana González-Feliu ◽  
Marcelo Muñoz-Vera ◽  
Felipe Valenzuela-Riffo ◽  
Carolina Parra-Palma ◽  
...  

The role of auxin in the fruit-ripening process during the early developmental stages of commercial strawberry fruits (Fragaria x ananassa) has been previously described, with auxin production occurring in achenes and moving to the receptacle. Additionally, fruit softening is a consequence of the depolymerization and solubilization of cell wall components produced by the action of a group of proteins and enzymes. The aim of this study was to compare the effect of exogenous auxin treatment on the physiological properties of the cell wall-associated polysaccharide contents of strawberry fruits. We combined thermogravimetric (TG) analysis with analyses of the mRNA abundance, enzymatic activity, and physiological characteristics related to the cell wall. The samples did not show a change in fruit firmness at 48 h post-treatment; by contrast, we showed changes in the cell wall stability based on TG and differential thermogravimetric (DTG) analysis curves. Less degradation of the cell wall polymers was observed after auxin treatment at 48 h post-treatment. The results of our study indicate that auxin treatment delays the cell wall disassembly process in strawberries.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9896 ◽  
Author(s):  
Jun Yu ◽  
Mingtao Zhu ◽  
Miao Bai ◽  
Yanshuai Xu ◽  
Shaogang Fan ◽  
...  

Fruit cracking is a physiological disorder in many plant species that leads to severe economic losses. The aim of this study was to investigate the effect of calcium on fruit cracking and explore the underlying mechanisms. We studied the effect of exogenous calcium on grape berry cracking, calcium absorbance and distribution, and cell wall metabolism in the cracking-susceptible cultivar ‘Xiangfei’. Calcium significantly reduced the frequency of fruit cracking, increased the break force of the berry skin, and stimulated storage of calcium. In addition, calcium increased the content of protopectin and inhibited the increase in content of water-soluble pectin, by regulating the transcription and activities of enzymes associated with cell wall metabolism. Taken together, the results indicated that dipping grape berries in calcium solution is effective in preventing fruit cracking by stimulating calcium uptake, inhibiting cell wall disassembly, and promoting cell wall strengthening.


2019 ◽  
Vol 124 (6) ◽  
pp. 1067-1089 ◽  
Author(s):  
Adriana Grandis ◽  
Débora C C Leite ◽  
Eveline Q P Tavares ◽  
Bruna C Arenque-Musa ◽  
Jonas W Gaiarsa ◽  
...  

Abstract Background and Aims Cell wall disassembly occurs naturally in plants by the action of several glycosyl-hydrolases during different developmental processes such as lysigenous and constitutive aerenchyma formation in sugarcane roots. Wall degradation has been reported in aerenchyma development in different species, but little is known about the action of glycosyl-hydrolases in this process. Methods In this work, gene expression, protein levels and enzymatic activity of cell wall hydrolases were assessed. Since aerenchyma formation is constitutive in sugarcane roots, they were assessed in segments corresponding to the first 5 cm from the root tip where aerenchyma develops. Key Results Our results indicate that the wall degradation starts with a partial attack on pectins (by acetyl esterases, endopolygalacturonases, β-galactosidases and α-arabinofuranosidases) followed by the action of β-glucan-/callose-hydrolysing enzymes. At the same time, there are modifications in arabinoxylan (by α-arabinofuranosidases), xyloglucan (by XTH), xyloglucan–cellulose interactions (by expansins) and partial hydrolysis of cellulose. Saccharification revealed that access to the cell wall varies among segments, consistent with an increase in recalcitrance and composite formation during aerenchyma development. Conclusion Our findings corroborate the hypothesis that hydrolases are synchronically synthesized, leading to cell wall modifications that are modulated by the fine structure of cell wall polymers during aerenchyma formation in the cortex of sugarcane roots.


Plants ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 154 ◽  
Author(s):  
Joonyup Kim ◽  
Jong-Pil Chun ◽  
Mark L. Tucker

Precise and timely regulation of organ separation from the parent plant (abscission) is consequential to improvement of crop productivity as it influences both the timing of harvest and fruit quality. Abscission is tightly associated with plant fitness as unwanted organs (petals, sepals, filaments) are shed after fertilization while seeds, fruits, and leaves are cast off as means of reproductive success or in response to abiotic/biotic stresses. Floral organ abscission in Arabidopsis has been a useful model to elucidate the molecular mechanisms that underlie the separation processes, and multiple abscission signals associated with the activation and downstream pathways have been uncovered. Concomitantly, large-scale analyses of omics studies in diverse abscission systems of various plants have added valuable insights into the abscission process. The results suggest that there are common molecular events linked to the biosynthesis of a new extracellular matrix as well as cell wall disassembly. Comparative analysis between Arabidopsis and soybean abscission systems has revealed shared and yet disparate regulatory modules that affect the separation processes. In this review, we discuss our current understanding of the transcriptional regulation of abscission in several different plants that has improved on the previously proposed four-phased model of organ separation.


Sign in / Sign up

Export Citation Format

Share Document