scholarly journals Photosynthetic Daily Light Integral Influences Flowering Time and Crop Characteristics of Cyclamen persicum

HortScience ◽  
2009 ◽  
Vol 44 (2) ◽  
pp. 341-344 ◽  
Author(s):  
Wook Oh ◽  
In Hye Cheon ◽  
Ki Sun Kim ◽  
Erik S. Runkle

This study was carried out to examine the effect of photosynthetic daily light integral (DLI) on the growth and flowering of cyclamen (Cyclamen persicum Mill. ‘Metis Scarlet Red’). Plants with six fully unfolded leaves were grown at 24/16 °C (12 h/12 h) under an 8- or 16-h photoperiod at a photosynthetic photon flux of 50, 100, 150, 200, and 300 μmol·m−2·s−1, which provided seven DLIs: 1.4, 2.9, 4.3, 5.8, 8.6, 11.5, and 17.3 mol·m−2·d−1. Days to first flower decreased from 133 to 75 as DLI increased from 1.4 to 17.3 mol·m−2·d−1, although the acceleration of flowering was less pronounced when the DLI was greater than 5.8 mol·m−2·d−1. Mean leaf and flower number increased from 8.7 to 28.0 and from 0 to 14.7, respectively, as DLI increased from 1.4 to 11.5 mol·m−2·d−1, but there was no further increase under a DLI of 17.3 mol·m−2·d−1. Total dry weight and net photosynthetic rate showed a similar trend as leaf and flower number. We conclude that supplemental lighting can accelerate greenhouse production of potted cyclamen under a low ambient DLI (i.e., less than 12 mol·m−2·d−1).

2007 ◽  
Vol 132 (3) ◽  
pp. 283-288 ◽  
Author(s):  
Lee Ann Moccaldi ◽  
Erik S. Runkle

Photosynthetic daily light integral (DLI) and temperature are two environmental factors that profoundly influence plant growth and development. Two common ornamental annual crops, salvia (Salvia splendens F. Sello ex Roem & Schult.) and marigold (Tagetes patula L.), were grown in glass greenhouses under a mean DLI of 5 to 25 mol·m−2·d−1 at temperatures from 14 to 27 °C. Growth (e.g., plant dry weight at flowering) and flowering characteristics (e.g., time to flowering and flower number) were modeled in response to the mean daily temperature and DLI by using multiple regression analysis. The rate of progress to flowering of salvia and marigold was primarily influenced by the mean air temperature. For example, time from seedling transplant to flowering of salvia decreased from 42 days to 24 days as temperature increased from 15 to 25 °C, with a mean DLI of 10 mol·m−2·d−1. Flower number and plant dry weight on the date of first flowering generally decreased with increasing temperature and decreasing DLI in both species. For example, marigold plants grown at 15 °C and a mean DLI of 25 mol·m−2·d−1 were 2.45 times greater in dry weight, had 2.12 more flowers, and had 49% larger flowers at flowering compared with plants grown at 25 °C and a mean DLI of 5 mol·m−2·d−1. The models can be used to predict the impact of changing light and temperature conditions on plant quality and flowering of these two crops.


HortScience ◽  
2001 ◽  
Vol 36 (1) ◽  
pp. 49-52 ◽  
Author(s):  
Chieri Kubota ◽  
Natsuko Kakizaki ◽  
Toyoki Kozai ◽  
Koichi Kasahara ◽  
Jun Nemoto

Nodal explants of tomato (Lycopersicon esculentum Mill.) were cultured in vitro to evaluate the effects of sugar concentration, photosynthetic photon flux (PPF), CO2 concentration, ventilation rate of the vessel, and leaf removal on growth and photosynthesis. After 20 days of culture, the dry weights of plantlets derived from explants with leaves and cultured photoautotrophically (without sugar in the medium) under high PPF, high CO2 concentration, and high ventilation rate were more than twice as great as those of plantlets derived conventionally from explants without leaves and cultured photomixotrophically (with sugar in the medium) under low PPF, low CO2 concentration, and low ventilation rate (107 and 45 mg per plantlet, respectively). Under photomixotrophic micropropagation conditions, the dry weights of plantlets from explants with leaves increased more than did those of plantlets from explants without leaves. High PPF, high CO2 concentration, and high ventilation rate increased net photosynthetic rate and promoted growth of the plantlets under photomixotrophic micropropagation conditions. Photomixotrophic conditions produced the greatest dry weight and the longest shoots, but photoautotrophic conditions produced the highest net photosynthetic rate. The number of leaves did not differ significantly between photoautotrophically and photomixotrophically cultured plantlets. Thus, photoautotrophic micropropagation is applicable to the production of high quality tomato transplants.


HortScience ◽  
1997 ◽  
Vol 32 (3) ◽  
pp. 515E-515
Author(s):  
C. Kubota ◽  
N. Abe ◽  
T. Kozai ◽  
K. Kasahara ◽  
J. Nemoto

`HanaQueen' tomato plantlets were cultured under conditions with different levels of sugar, photosynthetic photon flux, CO2 concentration, and number of air exchanges of the vessel. Effects of medium substrates (Gelrite or vermiculite) and explant preparation (with or without leaves) on growth of the plantlets were also examined. After 20 days in culture, photoautotrophically cultured plantlets with leafy explants, under increased PPF, CO2, and ventilation rate of the vessel had twice as much dry weight as those cultured conventionally with non-leafy explants under low PPF, CO2, and ventilation rate of the vessel. Dry weight of the plantlets was significantly greater when cultured with leafy than non-leafy explants. Net photosynthetic rate of the plantlets increased linearly as culture period when cultured without sugar, and remained almost zero when cultured with sugar, regardless of other culture conditions. Results obtained in this experiment have shown that tomato plantlets can be grown photoautotrophically, and the net photosynthetic rate was greater under photoautotrophic than under conventional photomixotrophic conditions.


HortScience ◽  
1995 ◽  
Vol 30 (2) ◽  
pp. 374-376 ◽  
Author(s):  
N.C. Yorio ◽  
C.L. Mackowiak ◽  
R.M. Wheeler ◽  
J.C. Sager

Potato (Solanum tuberosum L. cvs. Norland and Denali) plants were grown under high-pressure sodium (HPS), metal halide (MH), and blue-light-enhanced SON-Agro high-pressure sodium (HPS-S) lamps to study the effects of lamp spectral quality on vegetative growth. All plants were initiated from in vitro nodal cultures and grown hydroponically for 35 days at 300 μmol·m–2·s–1 photosynthetic photon flux (PPF) with a 12-hour light/12-hour dark photoperiod and matching 20C/16C thermoperiod. `Denali' main stems and internodes were significantly longer under HPS compared to MH, while under HPS-S, lengths were intermediate relative to those under other lamp types, but not significantly different. `Norland' plants showed no significant differences in stem and internode length among lamp types. Total dry weight of `Denali' plants was unaffected by lamp type, but `Norland' plants grown with HPS had significantly higher dry weight than those under either HPS-S or MH. Spectroradiometer measurements from the various lamps verified the manufacturer's claims of a 30% increase in ultraviolet-blue (350 to 450 nm) output from the HPS-S relative to standard HPS lamps. However, the data from `Denali' suggest that at 300 μmol·m–2·s–1 total PPF, the increased blue from HPS-S lamps is still insufficient to consistently maintain short stem growth typical of blue-rich irradiance environments.


HortScience ◽  
2005 ◽  
Vol 40 (3) ◽  
pp. 645-649 ◽  
Author(s):  
James E. Faust ◽  
Veronda Holcombe ◽  
Nihal C. Rajapakse ◽  
Desmond R. Layne

Daily light integral (DLI) describes the rate at which photosynthetically active radiation is delivered over a 24-hour period and is a useful measurement for describing the greenhouse light environment. A study was conducted to quantify the growth and flowering responses of bedding plants to DLI. Eight bedding plant species [ageratum (Ageratum houstonianum L.), begonia (Begonia ×semperflorens-cultorum L.), impatiens (Impatiens wallerana L.), marigold (Tagetes erecta L.), petunia (Petunia ×hybrida Juss.), salvia (Salvia coccinea L.), vinca (Catharanthus roseus L.), and zinnia (Zinnia elegans L.)] were grown outdoors in direct solar radiation or under one of three shade cloths (50, 70 or 90% photosynthetic photon flux (PPF) reduction) that provided DLI treatments ranging from 5 to 43 mol·m–2·d–1. The total plant dry mass increased for all species, except begonia and impatiens, as DLI increased from 5 to 43 mol·m–2·d–1. Total plant dry mass of begonia and impatiens increased as DLI increased from 5 to 19 mol·m–2·d–1. Impatiens, begonia, salvia, ageratum, petunia, vinca, zinnia, and marigold achieved 50% of their maximum flower dry mass at 7, 8, 12, 14, 19, 20, 22, and 23 mol·m–2·d–1, respectively. The highest flower number for petunia, salvia, vinca, and zinnia occurred at 43 mol·m–2·d–1. Time to flower decreased for all species, except begonia and impatiens, as DLI increased to 19 or 43 mol·m–2·d–1. There was no consistent plant height response to DLI across species, although the shoot and flower dry mass per unit height increased for all species as DLI increased from 5 to 43 mol·m–2·d–1. Guidelines for managing DLI for bedding plant production in greenhouses are discussed.


HortScience ◽  
1992 ◽  
Vol 27 (12) ◽  
pp. 1312-1314 ◽  
Author(s):  
Chieri Kubota ◽  
Toyoki Kozai

Growth and net photosynthetic rate of potato (Solanum tuberosum L.) `Benimaru' plantlet in vitro were studied under a conventional photomixotrophic condition [with 20 g sucrose/liter in the medium and under 70 μmol·m-2·s-1 photosynthetic photon flux (PPF)] with minimal ventilation (MV) and under photoautotrophic conditions (without sugar in the medium and under 190 μmol·m-2·s-l PPF) with enhanced natural ventilation using an air diffusive filter (DV) or with forced ventilation (FV). Fresh weight of the plantlets cultured in the FV and DV treatments was 2.4 times that of the plantlets cultured in the MV treatment. Net photosynthetic rate and dry weight per plantlet were the highest in FV followed by DV. For photoautotrophic micropropagation, FV was superior to DV.


Agronomy ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 130
Author(s):  
Flor Hernandez ◽  
Rosalinda Villarreal ◽  
Valentin Torres ◽  
Adrien Gallou

Research into the symbiotic relationship between plants and arbuscular mycorrhizal fungi (AMF) is key for sustainable agricultural intensification. The objective of the present study is to evaluate native AMF at the monosporic level in greenhouse-grown, economically important crops. Agricultural soil samples from three locations (Saltillo, Zaragoza, and Parras) were obtained by combining portions resulting from a zigzag sampling pattern. From these samples, 15 morphotypes were extracted according to a modified Gerdemann’s technique and monosporically inoculated on melon, cucumber, tomato, and onion, 30 days after their sowing. Under a completely random experimental design, 16 treatments with three repetitions were defined. Plant height, root length, stem diameter, total fresh weight, fresh root weight, dry root weight, bulb weight, fresh leaf weight, total dry weight, flower number, leaf number, fruit number, spore number, and percentage of colonization were all evaluated. The results were subjected to the analysis of variance (ANOVA) and the Tukey comparison test (p ≤ 0.05), which showed that the monosporic inoculation favors significantly the AMF and the host, while the T6 (Saltillo spore + Steiner modified with 20% of the normal phosphorus concentration) showed a greater response uniformity on onion and melon, which indicates its great potential as an inoculum.


HortScience ◽  
1992 ◽  
Vol 27 (6) ◽  
pp. 696f-696
Author(s):  
N.C. Yorio ◽  
R.M. Wheeler ◽  
R.C. Weigel

Growth measurements of potato (Solanum tuberosum L.) cvs. Norland (NL), Denali (DN), and Kennebec (KN) were taken from 21-day-old plantlets grown in vitro. Studies were conducted in a growth chamber, with nodal explants grown in culture tubes with loose-fitted Magenta 2-way caps containing Murashige and Skoog salts with either 0, 1, 2 or 3% sucrose. The cultures received either 100 or 300 μmol m-2 s-1 photosynthetic photon flux (PPF), and the growth chamber was maintained at either 400 or 4000 μmol mol-1 CO2. All cvs. showed significant increases in growth on 0% sucrose media at 4000 μmol mol-1 CO2, indicating an autotrophic response. At 400 μmol mol-1 CO2, all cvs. showed an increase in total plantlet dry weight (DW) with increasing sucrose under both PPF levels. Within any sucrose treatment, the highest total DW for all cvs. resulted from 300 μmol m-2 s-1 PPF and 4000 μmol mol-1 CO2. At 4000 μmol mol-1 CO2, shoot DW declined with sucrose above 2% for DN and sucrose above 1% for NL at both PPF levels, suggesting that high sucrose levels may hinder growth when CO2 enrichment is used.


Sign in / Sign up

Export Citation Format

Share Document