scholarly journals Evaluation of Compost as an Amendment to Commercial Mixes used for Container-grown Golden Shrimp Plant Production

2001 ◽  
Vol 11 (1) ◽  
pp. 31-35 ◽  
Author(s):  
S.B. Wilson ◽  
P.J. Stoffella ◽  
D.A. Graetz

Growth of golden shrimp plant (Pachystachys lutea Nees.) transplants was evaluated in media containing 0%, 25%, 50%, 75%, or 100% compost derived from biosolids and yard trimmings. A commercial coir- or peat-based media was amended with compost. As compost composition in the peat or coir-based media increased from 0% to 100%, carbon/nitrogen ratios decreased; and media stability, nitrogen mobilization, pH, and electrical conductivity increased. Bulk density, particle density, air-filled porosity, container capacity, and total porosity increased as more compost was added to either peat- or coir-based media. Plants grown in media with high volumes of compost (75% or 100%) had less leaf area and lower shoot and root dry weight compared to the controls (no compost). Regardless of percentage of compost composition in either peat or coir-based media, all plants were considered marketable after 8 weeks.

HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1093c-1093
Author(s):  
William C. Fonteno

The determination of air and water holding capacities of horticultural substrates has been plagued by errors in measurement. The amount of air and water held at container capacity is influenced by the substrate and container height. Container capacity can be established through specific measurement. Air space, the difference between total porosity and container capacity, is usually poorly determined because of errors in total porosity measurement. Most researchers calculate total porosity (St) from the formula: St = 1-(ρb/ρp), where ρb is the dry bulk density and ρp is the particle density. While bulk density is usually measured, particle density is not. Many times an average ρp of 2.65 Mg·m-3 for mineral soils is used. This sometimes creates large errors in calculating total porosity because the values of ρp for horticultural substrates range from 0.35 to 2.1 Mg·m-3. Total porosity can be measured with great accuracy at 0 kPa tension on a pressure plate apparatus, but is costly in equipment and time. Using a modified method of extraction and a new apparatus, using standard aluminum soil sampling cylinders, total porosity was measured with an 85% reduction in time end no decrease in accuracy.


HortScience ◽  
1992 ◽  
Vol 27 (12) ◽  
pp. 1279-1280 ◽  
Author(s):  
Carl E. Niedziela ◽  
Paul V. Nelson

A new tube method for determining physical properties in container substrates was compared to an existing system. While both offer the advantages of undisturbed substrate and measurement of properties without altering the geometry of the substrate in the container, the tube method is easier to conduct. Both methods proved equally effective for determining air-tilled porosity, container capacity, total porosity, bulk density, and particle density.


HortScience ◽  
1994 ◽  
Vol 29 (7) ◽  
pp. 774-776 ◽  
Author(s):  
Daniel C. Bowman ◽  
Richard Y. Evans ◽  
Linda L. Dodge

A study was conducted to determine the potential for using ground automobile tires as a container medium amendment. Rooted cuttings of chrysanthemum [Dendranthema × grandiflorum (Ramat.) Kitamura] were planted in 1.56-liter pots containing 1 sand:2 sawdust (v/v) or media in which coarsely or finely ground particles of rubber substituted for 33%, 67%, or 100% of the sawdust. Amendment with the coarse material decreased total porosity and container capacity and increased air-filled porosity and bulk density relative to the sawdust control. Amending the medium with the fine material did not appreciably alter total porosity, container capacity, or bulk density, but did increase air-filled porosity. Plant height, fresh weight, dry weight, and number of open flowers were reduced significantly in rubber-amended media compared to sawdust controls. Rubber amendment reduced shoot tissue concentrations of N, P, K, Ca, Mg, and Cu, but increased Zn as much as 74-fold over control values. There was no accumulation of other heavy metals (Cd, Cr, Ni, Pb) or Na in the tissue due to rubber amendment. This study demonstrates that ground tires might be used as a component of container media in the production of greenhouse chrysanthemums. However, growth reductions and the potential for Zn toxicity may limit the usefulness of ground tires as a substitute for conventional organic amendments.


1989 ◽  
Vol 40 (2) ◽  
pp. 293 ◽  
Author(s):  
DR Eagling ◽  
RJ Sward ◽  
GM Halloran

Measurements were made on the effect of barley yellow dwarf virus (BYDV) infection on the early growth of four commercial cultivars of ryegrass (Lolium spp.) under two different temperatures (24�C and 16�C). At 24'C, BYDV infection was associated with reduced root dry weight (30-40%) in all cultivars; the effect of infection on shoot dry weight and leaf area was variable. At 16�C, the effect of BYDV infection was variable, being associated with increases in root dry weight, shoot dry weight, and leaf area in one cultivar (Grasslands Ariki) and decreases in another (Victorian). In two other cultivars, root dry weight, shoot dry weight and leaf area were not significantly affected (P>0.05) by infection with BYDV.At 24�C, the reductions in root dry weight associated with BYDV infection were not concomitant with reductions in the root relative growth rates. Up to at least 28 days after inoculation (46-50 days after germination) reductions in root dry weight were associated with both aphid-feeding damage and virus infection. Experiments with the cultivar Victorian, showed that shoot dry weight was not significantly affected (P>0.05) by feeding with viruliferous (BYDV) or non-viruliferous aphids (Rhopalosiphum padi L.). At 16�C, changes in root and shoot dry weight were associated with changes in the root and shoot relative growth rates.


2015 ◽  
Vol 29 (1) ◽  
pp. 101-106 ◽  
Author(s):  
A.A. Abd El-Halim ◽  
Arunsiri Kumlung

Abstract Until now sandy soils can be considered as one roup having common hydrophysical problems. Therefore, a laboratory experiment was conducted to evaluate the influence of bagasse as an amendment to improve hydrophysical properties of sandy soil, through the determination of bulk density, aggregatesize distribution, total porosity, hydraulic conductivity, pore-space structure and water retention. To fulfil this objective, sandy soils were amended with bagasse at the rate of 0, 0.5, 1, 2, 3 and 4% on the dry weight basis. The study results demonstrated that the addition of bagasse to sandy soils in between 3 to 4% on the dry weight basis led to a significant decrease in bulk density, hydraulic conductivity, and rapid-drainable pores, and increase in the total porosity, water-holding pores, fine capillary pores, water retained at field capacity, wilting point, and soil available water as compared with the control treatment


1970 ◽  
Vol 34 (1) ◽  
pp. 67-73
Author(s):  
M SH Islam ◽  
MSU Bhuiya ◽  
AR Gomosta ◽  
AR Sarkar ◽  
MM Hussain

Pot experiments were conducted during T. aman 2001 and 2002 (wet season) at Bangladesh Rice Research Institute (BRRI) in net house. Hybrid variety Sonarbangla-1 and inbred modern variety BRRI dhan-31 were used in both the seasons and BRRI hybrid dhan-l was used in 2002. The main objective of the experiments was to compare the growth and yield behaviour of hybrid and inbred rice varieties under controlled condition. In 2001, BRRI dhan-3l had about 10-15% higher plant height, very similar tillers/plant, 15-25% higher leaf area at all days after transplanting (DAT) compared to Sonarbangla-1. Sonarbangla- 1 had about 40% higher dry matter production at 25 DAT but had very similar dry matter production at 50 and 75 DAT, 4-11% higher rooting depth at all DATs, about 22% higher root dry weight at 25 DAT, but 5-10% lower root dry weight at 50 and 75 DAT compared to BRRI dhan-31. The photosynthetic rate was higher (20 μ mol m-2/sec-1) in BRRI dhan-3l at 35 DAT (maximum tillering stage) but at 65 DAT, Sonarbangla-l had higher photosynthetic rate of 19.5 μ mol m-2 sec-1. BRRI dhan-3l had higher panicles/plant than Sonarbangla-1, but Sonarbangla-1 had higher number of grains/panicle, 1000-grain weight and grain yield than BRRI dhan-31. In 2002, BRRI dhan-31 had the highest plant height at 25 DAT, but at 75 DAT, BRRI hybrid dhan-l had the highest plant height. Sonarbangla-1 had the largest leaf area at 25 and 50 DAT followed by BRRI dhan-31, but at 75 DAT, BRRI dhan-31 had the largest leaf area. The highest shoot dry matter was observed in BRRI dhan-31 followed by Sonarbangla-1 at all DATs. Sonarbangla-1 had the highest rooting depth and root dry weight at all DATs. BRRI dhan-31 gave the highest number of panicles/plant followed by Sonarbangla-I, BRRI hybrid dhan-l had the highest grains/panicle followed by BRRI dhan-31 and Sonarbangla-I had the highest 1000-grain weight followed by BRRI dhan-31. The highest amount of grains/plant (34.6 g) was obtained from BRRI dhan-31. Key Words: Shoot dry matter; root dry weight; leaf area; photosynthesis; grain yield. DOI: 10.3329/bjar.v34i1.5755Bangladesh J. Agril. Res. 34(1) : 67-73, March 2009


HortScience ◽  
1994 ◽  
Vol 29 (11) ◽  
pp. 1298-1302 ◽  
Author(s):  
D. Bradley Rowe ◽  
Stuart L. Warren ◽  
Frank A. Blazich

Catawba rhododendron (Rhododendron catawbiense Michx.) seedlings of two provenances, Johnston County, N.C. (35°45′N, 78°12′W, elevation = 67 m), and Yancey County, N.C. (35°45′N, 82°16′W, elevation = 1954 m), were grown in controlled-environment chambers for 18 weeks with days at 18, 22, 26, or 30C in factorial combination with nights at 14, 18, 22, or 26C. Shoot and root dry weights and total leaf areas of seedlings of the Yancey County provenance (high elevation) exceeded (P ≤ 0.05) those of the Johnston County (low elevation) provenance at all temperature combinations. Leaf area was maximal at 22/22C, 18/26C, and 22/26C and minimal at 30/14C (day/night). Shoot dry weight responded similarly. Root dry weight decreased linearly with increasing day temperature, but showed a quadratic response to night temperature. Leaf weight ratio (leaf dry weight: total plant dry weight) increased, while root weight ratio (root dry weight: total plant dry weight) decreased with increasing day temperature. Leaf weight ratio was consistently higher than either stem or root weight ratios. Day/night cycles of 22 to 26/22C appear optimal for seedling growth.


HortScience ◽  
2002 ◽  
Vol 37 (2) ◽  
pp. 309-312 ◽  
Author(s):  
M. Arenas ◽  
C.S. Vavrina ◽  
J.A. Cornell ◽  
E.A. Hanlon ◽  
G.J. Hochmuth

Sixteen media prepared from peat, coir, vermiculite, or perlite were used to determine the optimum growing media for tomato (Lycopersicum esculentum Mill.) transplants. Medium composition did not affect tomato seed emergence, although seedling emergence was higher in winter (90%) than summer (85%). Greatest transplant root dry weight, stem diameter, and leaf area were achieved in 50% to 75% peat + 25% to 50% vermiculite in summer. In winter, greatest transplant root dry weight, stem diameter, and leaf area were achieved in eight media: 100% peat, 75% peat + 25% vermiculite, 75% peat + 25% perlite, 50% peat + 50% vermiculite, 50% peat + 50% perlite, 25% peat + 50% coir + 25% vermiculite, 50% peat + 25%coir + 25% vermiculite, and 25% peat +25% coir +25% vermiculite +25% perlite. Transplants grown with >50% coir exhibited reduced plant growth compared to peat-grown transplants, a response that may be associated with high N immobilization by microorganisms and high C:N ratio. Despite transplant growth differences during the summer, fruit yields generally were unaffected by transplant media.


HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 868B-868
Author(s):  
Jennifer Marohnic ◽  
Robert L. Geneve

Marigold seedlings were grown in four containers that differed in both volume and shape. Seedlings grown in 1.5-gal containers showed the greatest potential for shoot and root development 20 days after sowing. These seedlings had greater leaf area, shoot and root dry weight, and total root number and length compared to seedlings grown in 406 plug trays, 72-cell packs, or 6-inch containers. There was a positive correlation (r2 = 0.81) between cell volume and seedling growth as well as a positive correlation (r2 = 0.89) between container height with seedling growth. An attempt was made to separate the impact of container volume vs. container height on seedling growth. Containers were designed using acrylics to vary the container height while keeping the volume constant at 1500 cm3. There was a positive correlation (r2 = 0.87) between shoot and root dry weight with container height. The data suggest that both container volume and height contribute to overall seedling growth in marigold, but when container volume is not limiting, container height has a large impact on seedling development.


2020 ◽  
pp. 1-10
Author(s):  
Iroegbu, Chidinma S ◽  
Asawalam, Damian O ◽  
O. A. Dada ◽  
J. E. Orji

Aim: To determine the effect of different rates of sawdust (SD) and poultry manure (PM) applied on some soil physical properties of acid sandy Ultisol, and some growth parameters and yield of cocoyam. Study Design: 2 x 5 factorial arrangement in a randomized complete block design replicated three times.  Place and Duration of Study: The experiment was conducted in Eastern farm of Michael Okpara University of Agriculture, Umudike during 2014 and 2015 planting seasons. Methodology: The treatments comprised of two manure sources at five levels each: sawdust (0, 2, 10, 15 and 20t/ha) and poultry manure (0, 2, 4, 6 and 8t/ha). The treatments were assigned randomly to the plots and incorporated into the soil two weeks before planting. Data were collected on plant height, number of leaves, leaf area, corms, cormels and total yield. Soil samples were collected with core samplers for physical properties such as Soil Bulk density and Total Porosity. All the data collected were subjected to ANOVA for factorial experiment in RCBD at 5% probability level. Results: The result showed that the interactions of poultry manure and sawdust significantly (p<0.05) improved soil bulk density and total porosity with the lowest value obtained with 0t/ha SD + 8t/ha PM in both 2014 and 2015. The result showed that the interactions of poultry manure and sawdust significantly (p<0.05) increased the leaf area with the highest value obtained with 20t/ha SD + 8t/ha PM in both 2014 and 2015. Also, only the increasing rates of treatment applied significantly (p<0.05) increased the number of leaves, plant height, leaf area and cocoyam yield with the highest value obtained with 20t/ha SD + 8t/ha PM. Also, the various rates of treatment application significantly (p<0.05) increased the cocoyam yield (weight of corms and cormels) with the highest value obtained with 20t/ha SD + 8t/ha PM. Conclusion: Improvement in growth and yield of cocoyam resulted from the improved nutrient status of the soil as a result of the amendments applied.


Sign in / Sign up

Export Citation Format

Share Document