container capacity
Recently Published Documents


TOTAL DOCUMENTS

47
(FIVE YEARS 9)

H-INDEX

9
(FIVE YEARS 0)

Konversi ◽  
2021 ◽  
Vol 10 (2) ◽  
Author(s):  
Andika Putra ◽  
Yusrianti Yusrianti ◽  
Shinfi Wazna A.

Ngepung Village is a village located in the eastern part of Kedamean District, Gresik Regency with an area of 5.08 km2. Ngepung Village is divided into 3 Hamlets, 5 Rukun Warga (RW), and 14 Rukun Tetangga (RT) consisting of 3493 people. Waste management in Ngepung Village still uses the old paradigm, namely gathering-burning or gathering-wasting. The purpose of this study is to determine the existing condition of waste management in Ngepung Village and to plan waste collection and storage. The research method includes direct measurement of waste generation, interviews, observation and documentation. Determination of sampling using simple random sampling according to SNI 19-3964-1994. Data analysis used quantitative descriptive techniques. The results of the study stated that most of the residents of Ngepung Village used plastic bags as garbage containers. The average value of waste generation in Ngepung Village is 2.05 L/org.day or 0.31 kg/org.day. Meanwhile, the composition of waste is dominated by organic waste of 60.49%. The waste collection plan consists of 2 types of waste containers, namely organic and inorganic containers, with a housing waste container capacity of 25 liters per family, a 70 liter office waste container capacity, 100 liter pesantren waste containers, 30 liter schools, and 25 liter places of worship. Garbage collection is planned to be carried out every 3 days with 3 cycles using 5 units of three-wheeled motorized carts with a capacity of 1.25 m3.


2021 ◽  
Vol 4 (2) ◽  
pp. 130-137
Author(s):  
Sri Wardani (Universitas Widyatama) ◽  
Namun Mulyadi (Universitas Widyatama) ◽  
Nitta Fitria Anggraeni (Universitas Widyatama)

AbstractLoading into containers must consider the level of efficient use of container space. The use of empty space and the arrangement of goods in containers that have not been optimal are problems in the process of loading goods. In this regard, the plan for the preparation of goods to be made by researchers is assisted with a software that will facilitate the optimal arrangement of goods arranged in containers. The parameters are reviewed from the aspect of purpose, weight, volume, and type of goods to see whether the optimal use of goods. Cube IQ became the software chosen to help implement the system in this study by determining the coordinates and 3D visualization of the arrangement of goods in containers. Goods data and container data become the data used in the simulation process. Dimensions (length, width, height) define the required item data. While dimensions (maximum weight and volume of containers) defines the required container data. After simulating the Cube IQ software there was an increase in the use of container capacity by 88.35% while manually only 87.91%. The implication is a decrease in distribution costs per unit, which is 0.5%. The optimization results obtained are expected to be able to provide input in making decisions determining the optimal arrangement of goods and fleet numbers.AbstrakPemuatan ke dalam kontainer harus mempertimbangkan tingkat efisiensi penggunaan ruang kontainer. Penggunaan ruang kosong dan penyusunan barang dalam kontainer yang belum optimal menjadi permasalahan proses muat barang. Berkaitan dengan hal itu, rencana penyusunan barang yang akan dibuat oleh peneliti dibantu dengan suatu perangkat lunak yang akan memudahkan simulasi penataan barang yang optimal pada kontainer. Parameter ditinjau dari aspek tujuan, berat, volume, dan jenis barang untuk melihat optimal tidaknya penyusunan barang. Cube IQ menjadi software yang dipilih untuk membantu mengimplementasikan sistem dalam penelitian ini dengan penentuan titik koordinat dan visualisasi 3D penataan barang pada kontainer. Data barang dan data kontainer menjadi data yang digunakan pada proses simulasi. Dimensi (panjang, lebar, tinggi) mendefinisikan data barang yang diperlukan. Sementara dimensi (berat dan volume maksimum kontainer) mendefiniskan data kontainer yang diperlukan. Setelah dilakukan simulasi dengan software Cube IQ terdapat peningkatan penggunaan kapasitas kontainer sebesar 88,35% sedangkan secara manual hanya 87,91%. Implikasinya terjadi penurunan biaya distribusi per unit yaitu sebesar 0,5% Hasil optimasi yang diperoleh diharapkan mampu memberi masukan dalam pengambilan keputusan menentukan penyusunan barang dan jumlah armada yang optimal


Abstract This chapter provides a technical guide for rearing Anagasta kuehniella [Ephestia kuehniella] for Trichogramma production. Optimal container capacity, inactivation of A. kuehniella embryos, thermal conditions, exploitation time of adult and egg collection trays, rearing problems, and storage and transport were discussed.


Author(s):  
Юй. Синьянь

Проектирование крупнотоннажных контейнеровозов и конструкций корпуса таких судов, в частности – сложные технические задачи. Для их успешного решения необходимо располагать достаточным опытом и иметь в наличии данные по существующим судам-прототипам. Публикации по этим вопросам, особенно в России, судостроительная отрасль которой не специализируется на проектировании таких судов, достаточно ограничены и касаются в основном проблем проектирования контейнеровозов с относительно небольшой контейнерной вместимостью. В настоящее время крупнейшие контейнеровозы, которые поставляются уже с 2013 года, достигают вместимости 13800 – 22000 TEU. Эти суда - большой шаг к значительному росту размеров контейнеровозов, происходящему в течение последних лет. Цель настоящей статьи – представить некоторые результаты обобщения современной информации об архитектурно-конструктивных особенностях крупнотоннажных контейнеровозов с контейнерной вместимостью от 10 до 20 тыс. TEU, которая необходима для решения задач параметрического проектирования / выполнения проверочных расчетов прочности конструкций корпуса таких судов. В статье представлены данные о тенденциях в строительстве и заказе контейнеровозов различных размеров по всему миру с 1960 по 2020 г. Приведены статистические зависимости, связывающие водоизмещение, дедвейт, количество перевозимых контейнеров, а также соотношения главных размерений с длиной крупнотоннажных контейнерных судов в диапазоне вместимости 8800-22000 TEU. Рассмотрены архитектурно-конструктивные особенности крупнотоннажных контейнерных судов в части: компоновки грузового района, размеров и формы грузовых трюмов. Отмечены особенности конструкции корпуса контейнеровоза и факторы их обуславливающие. Указано определяющее влияние размеров контейнеров на формирование геометрии и конструкции корпуса. Выделены главные проблемы, которые приходится решать при проектировании конструкций корпуса крупнотоннажных контейнеровозов The design of large-capacity container ships and the hull structures of such ships, in particular, are complex technical tasks. For their successful solution, it is necessary to have sufficient experience and to have available data on existing prototype vessels. Publications on these issues, especially in Russia, the shipbuilding industry of which does not specialize in the design of such vessels, are quite limited and deal mainly with the problems of designing container ships with a relatively small container capacity. Currently, the largest container ships that have been supplied since 2013 reach a capacity of 13,800 - 22,000 TEU. These vessels are a big step towards a significant increase in the size of container ships over the past few years. The purpose of this article is to present some results of summarizing modern information on the architectural and structural features of large-capacity container ships with a container capacity of 10 to 20 thousand TEU, which is necessary for solving the problems of parametric design / performing verification of the hull's structural strength of such vessels. The article presents data on trends in the construction and ordering of container ships of various sizes around the world from 1960 to 2020. Statistical dependencies that link the displacement, deadweight, the number of containers transported, as well as the ratio of the main dimensions with the length of large-tonnage container vessels in the range of capacity 8800- 22,000 TEU are presented. The architectural and structural features of large-tonnage container ships in application to the layout of the cargo area, the size and shape of cargo holds are considered. The design features of the container ship's hull and their contributing factors are noted. The determining influence of container sizes on the formation of the geometry and structure of the ship's hull is indicated. The main problems that have to be addressed when designing the hull structures of large-tonnage container ships are identified.


Water ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2436
Author(s):  
Joshua Knight ◽  
Damon E. Abdi ◽  
Dewayne L. Ingram ◽  
R. Thomas Fernandez

Water scarcity footprint (WSF) was determined for irrigation experiments in 2017 and 2018 for container-grown plants in a specially designed research nursery in Michigan, USA. The system design allowed for the capture of irrigation water running off a fabric surface of a nursery bed and irrigation water that passed through the fabric surface and moved through a bed of sand under the fabric. The volume of irrigation water applied (IWA) from a groundwater source and the volume of water that would be necessary to dilute (WD) water leaving the system to tap water standards for NO 3 − and PO 4 3 − of 10 mg L−1 and 0.05 mg L−1, respectively, were determined. The sum of IWA and WD would be the consumptive water use (CWU) of each treatment. WSF was calculated by weighting these component volumes per plant grown in a 10.2 L container using the consumption-to-availability scarcity index for this river basin. The WSF of water requirements for dilution (WSFwd) for plants in 2017 (20 May to 25 September) were calculated as 150, 37, and 34 L per plant for control plants, those receiving 2 L per day, and those returned to container capacity daily, respectively. In 2018 (11 June to 12 October), WSF of irrigation water applied (WSFiwa) for control plants, those receiving daily water use replacement (DWU), and those returned to container capacity daily were calculated to be 116, 61, and 28 L. Control plants received 19 mm of irrigation daily through overhead sprinklers in both experiments. In almost all cases, the PO 4 3 − dilution requirements set the dilution coefficients for WSFwd calculations. The irrigation control treatment resulted in higher WSFwd than irrigation treatments through spray stakes providing 2 L per container per day, irrigation returning the substrate water content to container capacity daily, or daily irrigation based on DWU. Fertilizer treatments and substrate composition treatments across irrigation treatments had only a minor impact on WSF.


HortScience ◽  
2019 ◽  
Vol 54 (11) ◽  
pp. 2024-2030
Author(s):  
Erin J. Yafuso ◽  
Paul R. Fisher ◽  
Ana C. Bohórquez ◽  
James E. Altland

Greenhouse propagation of unrooted plant cuttings is characterized by short container cell height and high irrigation frequency. These conditions can result in high moisture level and low air content in soilless container substrates (“substrates”), causing delayed growth of adventitious roots and favoring root disease. The objective of this study was to quantify and compare substrate water and air relations for three propagation substrates (peat, rockwool, and phenolic foam) that varied widely in physical characteristics using four methods: 1) evaporation method with a tensiometer, 2) frozen column method, 3) gravimetric analysis, and 4) X-ray computed tomography (CT) analysis. Moisture retention curves based on evaporation (1) and the frozen column (2) resulted in differences for peat, but similar curves for rockwool and foam. The frozen column method was simple and low cost, but was constrained by column height for peat, which had a higher water potential compared with the other two substrates. Substrate porosity analysis at container capacity by gravimetric or CT methods were similar for volumetric water and air content (VWC and VAC) in rockwool and foam, but differed for peat for VWC and VAC. Gravimetric analysis was simple, rapid, and low cost for whole-cell analysis, but CT further quantified spatial water and air relations within the cell and allowed visualization of complex water and air relations in an image. All substrates had high water content at container capacity ranging from 67% to 91% VWC with 5% to 11% VAC in the short propagation cells, emphasizing the need for careful irrigation management.


Author(s):  
Erin Teeple ◽  
Jack T. Dennerlein ◽  
Dean Hashimoto ◽  
Luis A. Soto ◽  
Elena Losina ◽  
...  

The Joint Commission provides accreditation standards for staging hospital waste, but there are no federal lifting safety standards for linen bags. We evaluated hospital laundry bag lifting using the Revised National Institute for Occupational Safety and Health (NIOSH) Lifting Equation. We hypothesized that the permitted 32-gallon linen container capacity might allow filling to weights above our calculated Recommended Weight Limit (RWL) for some lifting positions and contents. We found that 30- and 40-gallon bags filled with loose dry linen had predicted weights within estimated RWLs only for lifts close to the body. Thirty- and 40-gallon bags filled more than halfway with dry compact linen had predicted weights above estimated RWLs for all lifting positions. Thirty- and 40-gallon bags filled with wet compact linen exceeded estimated RWLs for all positions when less than one-quarter full. Bag volume and filling controls may be considered to ensure linen bags are not excessively heavy.


Sign in / Sign up

Export Citation Format

Share Document