scholarly journals Vesicular-Arbuscular Mycorrhiza and Plant Growth Response to Soil Amendment with Composted Grape Pomace or Its Water Extract

2001 ◽  
Vol 11 (3) ◽  
pp. 446-450 ◽  
Author(s):  
R.G. Linderman ◽  
E.A. Davis

Composted materials with high humic and microbial content, and their water extracts, are increasingly used in the nursery industry as potting mix components or as liquid amendments for the purposes of enhancing plant growth. Common speculation is that such materials either contain beneficial microbes or stimulate those in or added to the medium, such as vesicular-arbuscular mycorrhizal (VAM) fungi, known to have growth-stimulating effects on plants. Experiments were conducted to determine if one such compost enhanced plant growth by stimulating VAM fungi or other growth-enhancing microbes, by simply providing limiting nutrients [phosphorus (P)], or a combination of the two. Highly mycorrhiza-responsive onion (Allium cepa) `White Lisbon' was used to evaluate the interactions of composted grape pomace (CGP), the VAM fungus Glomus intraradices, and preplant soil heat treatment on onion growth under P-limiting conditions. CGP and its water extract stimulated onion growth under P-limiting conditions in the absence of VAM; the extract was more effective than the granular CGP. Growth was enhanced further by addition of G. intraradices, and the extract enhanced its colonization of roots. Heat pretreatment of the soil inconsistently affected growth-enhancement by CGP or its extract. Thus, inoculating plant roots with mycorrhizal fungi in combination with this composted organic amendment or its extract was beneficial. The effect could have been due to the CGP providing a source of P to overcome the P-limiting conditions, and to the mycorrhizal fungus enhancing P uptake by its extraradical hyphae and thereby increasing nutrient-use efficiency.

1969 ◽  
Vol 72 (2) ◽  
pp. 191-199
Author(s):  
Stan Michelini ◽  
Stan Nemec

A citrus seedbed was established August 1984 on the west coast of Barbados. Before being planted and inoculated with vesicular-arbuscular mycorrhizal (VAM) fungi, one-half the seedbed was fumigated with methyl bromide; the other half was untreated. Four weeks after fumigation, four treatments, Glomus intraradices, G. mosseae, indigenous VAM fungi, and a noninoculated control were established in each half of the test. Early vigorous plant growth in the nonfumigated half of the plot suggested that indigenous VAM may have colonized and stimulated plant growth earlier than the treatments in the fumigated portion. Three months after inoculation, plants in both portions of the plot were growing well. In the fumigated area, application of two Glomus species, which were introduced from Florida, resulted in a significant improvement in plant growth over the control. This occurred in spite of the fact that infection levels in control roots were similar to those in inoculated roots. This study suggests that, when possible, alternative pesticides not harmful to VAM fungi should be used in place of methyl bromide fumigation to conserve these fungi in agricultural soils.


1995 ◽  
Vol 75 (1) ◽  
pp. 269-275 ◽  
Author(s):  
S. M. Boyetchko ◽  
J. P. Tewari

The relative susceptibility of selected barley cultivars produced in western Canada to vesicular-arbuscular mycorrhizal (VAM) fungi under field and greenhouse conditions was evaluated in this study. Cultivars tested under field conditions at the University of Alberta and Lacombe research stations showed no significant differences in VAM colonization of barley roots; colonization was light. Greenhouse trials at the University of Alberta with eight cultivars inoculated with individual mycorrhizal species illustrated significant differences among the barley cultivars in their reactions to Glomus dimorphicum, G. intraradices, and G. mosseae. Distinct differences were observed in the ability of each Glomus species to colonize the barley cultivars. The VAM fungi increased growth and yield in some cultivars, depending on the Glomus species. This study indicates that a degree of host-specificity exists in VAM fungi and that the host-mycorrhizal fungus genotypes may influence the effectiveness of the symbiosis. Key words: Barley, cultivars, susceptibility, VA mycorrhizal fungi


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 449e-449
Author(s):  
Martin Trépanier ◽  
Jacques-André Rioux

Roots of majority of natural shrubs are colonized by many species of vesicular–arbuscular mycorrhizal (VAM) fungi. These kinds of fungi form a symbiosis with the root system of the plant and give a better water and mineral absorption (P, Zn, N, Cu, etc.), and a better root disease resistance to the plant. However, the media usually used in ornemental plants nursery contain no or few mycorrhizal fungi. For now, new commercial inoculum are available and could be used to get the advantages provided by VAM fungi. In order to evaluate the potential of ornamental plants to be colonized, we have inoculated the rooting media with three VAM fungi (Glomus intraradices Schenk & Smith, Glomus etunicatum Becker & Gerdemann, and Glomus mosseae Nicol. & Gerd.; Premier Tech, Rivière-du-Loup, Québec). The inoculum proportion used contained about 1500 propagules/L. After 16 weeks, near 80% of the 200 species and cultivars tested have shown a colonization by at least one of the fungi. We shall present here a list of the results.


2004 ◽  
Vol 14 (1) ◽  
pp. 39-48 ◽  
Author(s):  
C.F. Scagel

We assessed whether addition of arbuscular mycorrhizal fungus (AMF) inoculum or rhizosphere organisms from AMF inoculum alters aspects of flowering, corm production, or corm quality of harlequin flower (Sparaxis tricolor) for two growth cycles after inoculation. Using pasteurized and nonpasteurized growth medium, plants were inoculated with either inoculum of the AMF, Glomus intraradices, or washings of the inoculum containing rhizobacteria. Shoots of plants inoculated with AMF emerged 2 days earlier than shoots on noninoculated plants or plants inoculated with inoculum washings. Flowers on AMF-inoculated plants opened 7-8 days earlier and plants produced more flowers per plant and per inflorescence than noninoculated plants. AMF-inoculated plants partitioned a higher proportion of biomass to cormel production than to daughter corms and had higher concentration and contents of zinc, sulfur, nitrogen, amino acids, and carbohydrates than corms from noninoculated plants. The rhizosphere organisms associated with the AMF inoculum influenced several measures of plant development, growth, and corm production suggesting that there are organisms associated with our AMF inoculum that have beneficial effects on the growth and productivity of harlequin flower. While inoculation with AMF can promote shoot emergence, leaf production, and flower production of harlequin flower, inoculation also alters aspects of biomass partitioning and corm composition that play an important role in the production of this crop for corms and cormels.


2003 ◽  
Vol 13 (1) ◽  
pp. 62-66 ◽  
Author(s):  
C.F. Scagel ◽  
K. Reddy ◽  
J.M. Armstrong

In a commercial nursery propagation system for hick's yew (Taxu×media `Hicksii'), we assessed whether or not the addition of inoculum of the vesicular-arbuscular mycorrhizal fungus (VAMF) Glomus intraradices into the rooting substrate during cutting propagation increased rooting, and how the quantity of inoculum influenced rooting. At 15 and 22 weeks (108 and 156 d) after cuttings were treated with root hormones and stuck, root initiation was higher on cuttings stuck in the rooting substrate containing VAMF inoculum. Increasing the quantity of inoculum in the rooting substrate increased root growth during the early stages of rooting. However the highest level of inoculum tested increased adventitious root initiation without increased root growth. Our results indicate that if VAMF inoculum is used during propagation from cuttings, there are optimal levels required to alter the initiation and growth of roots. For hick's yew, 1:100 or 2:100 (by volume) rates of G. intraradices in the rooting substrate increased the number of primary roots and growth of adventitious roots on cuttings above that achieved by using rooting hormone alone.


HortScience ◽  
1997 ◽  
Vol 32 (3) ◽  
pp. 447C-447
Author(s):  
Martin Trépanier ◽  
Jacques-André Rioux

A commercial inoculum of Glomus intraradices Schenk and Smith, a vesicular–arbuscular mycorrhizal fungus, has been used with the objective of studying its effects on rooting and on subsequent growth of two woody ornamental plants (Juniperus Sabina `Blue Danube' and Cornus sericea `Coloradensis'). This inoculum, called Mycorise™, is produced by Premier Peat Co. (Rivière-du-Loup, Québec, Canada) and it contains one propagule/g of Glomus intraradices. The cuttings's rooting media was mixed in order to contain 0%, 10%, 20%, 40%, or 80% of inoculum. Hardwood cuttings have been inserted in 65-ml cells and put under a mist until good rooting. For both species used, presence of inoculum in rooting media has not given significant effects during the rooting stage of cuttings, but has given some during the following stage of growth in 6-L containers. The growth of young mycorrhized plants of Juniperus was up to 50% greater than the control after the first season of growth. The young plants of Cornus have only showed a tendency to have a higher growth. Moreover, several mineral elements (N, P, Ca, Mn, Zn) were present at higher concentrations on mycorrhized plants. For roots colonization by the fungus and growth results, the inoculum proportion of the rooting media the most appropriate for Juniperus Sabina `Blue Danube', a slow-rooting species, was 40%, and the most appropriate for Cornus sericea `Coloradensis', a quick-rooting species, was 20%.


2012 ◽  
Vol 14 (4) ◽  
pp. 692-699 ◽  
Author(s):  
M.C. Arango ◽  
M.F. Ruscitti ◽  
M.G. Ronco ◽  
J. Beltrano

This study evaluated the effects of inoculation with the arbuscular mycorrhizal fungi Glomus mosseae, Glomus intraradices A4 and Glomus intraradices B1 and two phosphorus levels (10 and 40 mg kg-1) on root colonization, plant growth, nutrient uptake and essential oil content in Mentha piperita L. The experiment was carried out in a greenhouse, in 4x2 factorial arrangement, in completely randomized design. At sixty days after transplanting, the mycorrhizal plants had significantly higher fresh matter, dry matter and leaf area compared to non-mycorrhizal plants. The inoculation increased P, K and Ca levels in the shoot which were higher under 40 mg P kg-1 of soil. Plants grown with 40 mg P kg-1 soil increased the essential oil yield per plant by about 40-50% compared to those cultivated with 10 mg P kg-1, regardless of the mycorrhizal treatment. Among the studied fungal species, inoculation with G. intraradices A4 and a high level of P significantly increased plant growth and essential oil yield, compared to the other studied mycorrhizal fungal species. In conclusion, inoculation of arbuscular mycorrhizal fungi into peppermint plants is a feasible alternative to increase the essential oil production and reduce the use of fertilizers required to obtain economic production of peppermint under phosphorus-deficient soil condition.


2014 ◽  
Vol 23 ◽  
pp. 47-62
Author(s):  
J. Philip Robinson ◽  
K. Nithya ◽  
R. Ramya ◽  
B. Karthikbalan ◽  
K. Kripa

Plant growth and physiological response of sesame (Sesamum indicum L.) were studied in controlled environment using normal soil and indigenous Vesicular-arbuscular mycorrhiza (VAM) fungi treated soil. The seedlings of Zea mays were inoculated with Giguspora species of VAM (Glomus fasiculatum) and the inoculum was multiplied with help of Zeamays seed bed. Sesame seeds were then inoculated into the bed and it was found that the plant height, shoots lengths, roots, biomass of shoot and roots were considerably increased in the mycorrhizal plants. The effect of VAM infection was assessed in pot experiment. In this comparative study, specific mycorrhizal fungi had consistent effects on various growth parameters such as the number of leaves, number of roots, shoot length, biomass of shoot and roots and biochemical parameters were observed at various time intervals by statistical analysis using two way ANOVA, it was confined with mycorrhizal and non-mycorrhizal infected plants. It was found that the ability of isolates to maintain the plant growth effectively in the case of mycorrhizal seedlings shows a maximum absorbtion of 0.77 ±0.2, shoot length is about 8.34 ±0.2, count of root and leaves are about 8.10 ±0.3, 5.6 ±0.3 respectively under mycorrhizal infection in 30days of analysis and had a positive effect on the growth at all intervals. Biochemical analysis were carried out to estimate the total chlorophyll, chrophyll A, chlorophyll B and Carotenoids contents and it was analyzed to be 9 ±0.5 mg/g, 8.3 ±0.5 mg/g, 3.6 ±0.5 mg/g, 4 ±0.3 mg/g respectively. At the 30th day of analysis for the mycorrhizal plants, it was found to be high in mycorrhizal seedlings which shows the symbiosis had improved the nutrient uptake of cultivated plants. Nevertheless G. fasiculatum was found to be the most efficient fungus and exhibited the highest levels of mycorrhizal colonization, as well as the greatest stimulation of physiological parameters.


1980 ◽  
Vol 58 (20) ◽  
pp. 2200-2205 ◽  
Author(s):  
S. Asimi ◽  
V. Gianinazzi-Pearson ◽  
S. Gianinazzi

Growth and yield increases, obtained in nodulated soybeans growing in unamended sterile soil by inoculation with the vesicular–arbuscular (VA) mycorrhizal fungus Glomus mosseae, were accompanied by improved P uptake, lower root to shoot ratios, better nodulation with higher nitrogenase activity, and modifications in the pattern of the latter during plant growth. Stimulation of nitrogenase activity occurred early in plant development and preceded plant growth responses by about 2 weeks. Phosphate fertilization increased yield, percent P but not percent N of both mycorrhizal and nonmycorrhizal soybeans, and also modified the pattern and amount of nitrogenase activity during plant growth. Additions of 0.25 g KH2PO4/kg to the soil eliminated the mycorrhizal effect on plant growth, but nodule formation and nitrogenase activity were still significantly stimulated by the mycorrhizal infection. Mycorrhizal effects on nodulation were eliminated with 0.5 g KH2PO4 and on nitrogenase activity with the addition of 1.0 g KH2PO4. These higher levels of phosphate fertilization considerably diminished infection and, in particular, fungal spread within the roots.


Sign in / Sign up

Export Citation Format

Share Document