scholarly journals Florida Commercial Horticultural Production: Constraints Limiting Water and Nutrient Use Efficiency

2010 ◽  
Vol 20 (1) ◽  
pp. 89-93 ◽  
Author(s):  
Craig D. Stanley ◽  
Gurpal Toor

Application of water and nutrients for horticultural production in Florida can be accomplished through many different methods. Often, the irrigation system that is used determines the potential use efficiency for both water and nutrients. Producers face many constraints, real and perceived, that affect management decisions. This article provides an overview of many of the constraints that are encountered and identifies those management practices that are most effective for overcoming these constraints with respect to commonly used irrigation systems. These constraints include those related to irrigation system design and capabilities, soil factors, cultural practices, management intensity, and economic and regulatory conditions. Ultimately, the goal of this discussion is to determine where future research efforts should be focused and what critical issues may be on the horizon that may affect the Florida horticultural industry.

Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 643
Author(s):  
Gaia Santini ◽  
Natascia Biondi ◽  
Liliana Rodolfi ◽  
Mario R. Tredici

Cyanobacteria can be considered a promising source for the development of new biostimulants as they are known to produce a variety of biologically active molecules that can positively affect plant growth, nutrient use efficiency, qualitative traits of the final product, and increase plant tolerance to abiotic stresses. Moreover, the cultivation of cyanobacteria in controlled and confined systems, along with their metabolic plasticity, provides the possibility to improve and standardize composition and effects on plants of derived biostimulant extracts or hydrolysates, which is one of the most critical aspects in the production of commercial biostimulants. Faced with these opportunities, research on biostimulant properties of cyanobacteria has undergone a significant growth in recent years. However, research in this field is still scarce, especially as regards the number of investigated cyanobacterial species. Future research should focus on reducing the costs of cyanobacterial biomass production and plant treatment and on identifying the molecules that mediate the biostimulant effects in order to optimize their content and stability in the final product. Furthermore, the extension of agronomic trials to a wider number of plant species, different application doses, and environmental conditions would allow the development of tailored microbial biostimulants, thus facilitating the diffusion of these products among farmers.


HortScience ◽  
2011 ◽  
Vol 46 (2) ◽  
pp. 296-305 ◽  
Author(s):  
Carolyn F. Scagel ◽  
Guihong Bi ◽  
Leslie H. Fuchigami ◽  
Richard P. Regan

The influence of nitrogen (N) fertilizer application on plant allocation, uptake, and demand for other essential nutrients was evaluated from May 2005 to Feb. 2006 in evergreen Rhododendron ‘P.J.M. Compact’ (PJM) and ‘English Roseum’ (ER) and deciduous Rhododendron ‘Gibraltar’ (AZ) grown in containers filled with soilless substrate. Net nutrient uptake and losses were calculated using piecewise regression and uptake efficiency, root absorption capacity, aboveground demand, nutrient use efficiency, and uptake ratios between N and other nutrients (N ratios) were calculated using net uptake between harvest dates. Nitrogen application increased uptake rate of all nutrients, enhanced late-season uptake of many nutrients, and increased the rate of nutrient loss during the winter. Nutrient uptake often occurred as late as November in plants grown with N but was usually undetectable after September in plants grown without additional N fertilizer. Nutrient losses during the winter were not always associated with biomass loss and were related to differences in preferential nutrient allocation to different structures and the plant's ability to export nutrients before biomass loss. Plants with a greater potential for rapid growth were more capable of later-season nutrient uptake than plants with slower growth rates. Nitrogen availability altered N ratios indicating that when adding N to container-grown Rhododendron, fertilizers with higher ratios of N/phosphorus (PJM, AZ), N/calcium (PJM, ER), N/boron (PJM AZ), N/copper (PJM, ER), and N/iron (PJM, ER) and lower ratios of N/potassium (PJM, ER, AZ), N/sodium (PJM, ER, AZ), N/calcium (AZ), N/boron (ER), N/manganese (AZ), and N/zinc (ER) may be needed to optimize growth and minimize nutrient inputs. Increasing N availability altered uptake efficiency, root absorption capacity, aboveground demand, and nutrient use efficiency for several nutrients, indicating that changes in N management practices need to consider how altering N application rates may influence the plant's ability to take up and use other nutrients. This information can be used to develop fertilizer formulations to minimize excess application of nutrients and to evaluate the potential effects of altering N management practices on use of production resources. Our results indicate that nutrient management strategies for perennial crops such as Rhododendron need to take into consideration not only the nutrient demand for current growth, but also how to optimize nutrient availability for uptake that contributes to future growth potential and end-product quality.


2018 ◽  
Vol 8 ◽  
Author(s):  
Alexandra Tomaz ◽  
Manuel Patanita ◽  
Isabel Guerreiro ◽  
José Dôres ◽  
Luis Boteta ◽  
...  

In the region of Alentejo, Southern Portugal, as a consequence of the implementation of the Alqueva global irrigation system, agriculture intensification is challenging the sustainability of the farming systems. The demand for water and for fertilizers is increasing but so is the demand for water use efficiency (WUE) and for nutrient use efficiency (NUE). Increasing resource-use efficiency while reducing yield gaps can be addressed by suitable agricultural management practices, as in the case of crop rotations. Based on a demonstration project carried out in two farms located in Baixo Alentejo, within the Alqueva irrigation network, soil fertility parameters, WUE and NUE (for nitrogen, phosphorus and potassium) were studied in three maize-based cropping systems: a maize monoculture (M-M) and two rotations, barley+maize-barley (BM-B) and sunflower-barley+maize (S-BM). The total soil organic matter content increased in the two rotations, an important observation especially in soils with low organic content. The final balance of extractable phosphorus and potassium was positive in the BM-B rotation. Water use efficiency values point to a less balanced performance of the S-BM rotation. The WUE and the nitrogen NUE in the different crops and rotations followed a similar pattern. The M-M and BM-B crop successions showed the best indicators of NUE for nitrogen and phosphorus. In all the cropping systems, the potassium NUE was low, suggesting the need to carefully equate the additions of this nutrient by fertilization.


Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2320
Author(s):  
Raj K. Jat ◽  
Deepak Bijarniya ◽  
Suresh K. Kakraliya ◽  
Tek B. Sapkota ◽  
Manish Kakraliya ◽  
...  

Intensive tillage-based production systems coupled with inefficient fertilizer management practices have led to increased production costs, sub-optimal productivity, and significant environmental externalities. Conservation agriculture (CA) is being increasingly advocated as a management strategy to overcome these issues but precision nutrient management under the CA-based maize-wheat system is rarely studied. Two year’s (2014–2015 and 2015–2016) research was conducted at the research farm of BISA, Pusa, Bihar, India to develop precision nutrient management practices for CA-based management in the maize-wheat system. Seven treatment combinations involving (i) tillage (conventional tillage; CT & permanent beds; PB) and (ii) nutrient management rates, application methods (farmers’ fertilizer practices; FFP, state recommended dose of fertilizer; SR and precision nutrient management using Nutrient Expert tool; NE and GreenSeeker; (GS), applied using two methods; broadcasting (B) and drilling (D)) were investigated for multiple parameters. The results showed that NE, NE+GS, and SR-based nutrient management tactics with drilling improved crop yields, nutrient-use efficiency (NUE), and economic profitability relative to NE-broadcasting, SR broadcasting, and FFP broadcasting methods. Maize-wheat system productivity and net returns under NE+GS-drilling on PB were significantly higher by 31.2%, 49.7% compared to FFP-broadcasting method, respectively. Total global warming potential (GWP) was lower in the PB-based maize-wheat system coupled with precision nutrient management compared to CT-based maize-wheat system with FFP. Higher (15.2%) carbon sustainability index (CSI) was recorded with NE-drilling compared to FFP-broadcasting method. Results suggests that PB-based maize-wheat system together with precision nutrient management approaches (NE+GS+drilling) can significantly increase crop yields, NUE, and profitability while reducing the emission of greenhouse gases (GHGs) from maize-wheat systems in eastern Indo Gangetic Plains (IGP).


2010 ◽  
Vol 20 (1) ◽  
pp. 23-33 ◽  
Author(s):  
Thomas A. Obreza ◽  
Jerry B. Sartain

Florida's citrus (Citrus spp.), vegetable, and turfgrass industries must improve nitrogen (N) and phosphorus (P) fertilizer use efficiency to remain sustainable in an era of emerging environmental policies designed to protect water quality. Producers have traditionally used water-soluble N and P fertilizers because they are plentiful and economical. Improving nutrient use efficiency (NUE) is being addressed through implementation of best management practices (BMPs) such as nutrient management planning, proper fertilizer material selection, better application timing and placement, and improved irrigation scheduling. Emerging technology that will aid in this effort includes increased use of enhanced efficiency fertilizers (EEFs), organic soil amendments, fertigation, and foliar fertilization. However, any new technology shown to improve NUE must be economically feasible before it can be considered a BMP. Future research in this area will aim to improve the economics of EEFs and precision fertilizer application.


EDIS ◽  
2020 ◽  
Vol 2020 (5) ◽  
Author(s):  
Mary Dixon ◽  
Guodong Liu

Tomato is in high demand because of its taste and health benefits. In Florida, tomato is the number one vegetable crop in terms of both acreage and value. Because of its high value and wide acreage, it is important for tomato production to be efficient in its water and nutrient use, which may be improved through fertigation practices. Therefore, the objective of this new 7-page article is to disseminate research-based methods of tomato production utilizing fertigation to enhance yield and nutrient use efficiency. Written by Mary Dixon and Guodong Liu, and published by the UF/IFAS Horticultural Sciences Department.https://edis.ifas.ufl.edu/hs1392


Sign in / Sign up

Export Citation Format

Share Document