scholarly journals Efficient use of water and nutrients in irrigated cropping systems in the Alqueva region

2018 ◽  
Vol 8 ◽  
Author(s):  
Alexandra Tomaz ◽  
Manuel Patanita ◽  
Isabel Guerreiro ◽  
José Dôres ◽  
Luis Boteta ◽  
...  

In the region of Alentejo, Southern Portugal, as a consequence of the implementation of the Alqueva global irrigation system, agriculture intensification is challenging the sustainability of the farming systems. The demand for water and for fertilizers is increasing but so is the demand for water use efficiency (WUE) and for nutrient use efficiency (NUE). Increasing resource-use efficiency while reducing yield gaps can be addressed by suitable agricultural management practices, as in the case of crop rotations. Based on a demonstration project carried out in two farms located in Baixo Alentejo, within the Alqueva irrigation network, soil fertility parameters, WUE and NUE (for nitrogen, phosphorus and potassium) were studied in three maize-based cropping systems: a maize monoculture (M-M) and two rotations, barley+maize-barley (BM-B) and sunflower-barley+maize (S-BM). The total soil organic matter content increased in the two rotations, an important observation especially in soils with low organic content. The final balance of extractable phosphorus and potassium was positive in the BM-B rotation. Water use efficiency values point to a less balanced performance of the S-BM rotation. The WUE and the nitrogen NUE in the different crops and rotations followed a similar pattern. The M-M and BM-B crop successions showed the best indicators of NUE for nitrogen and phosphorus. In all the cropping systems, the potassium NUE was low, suggesting the need to carefully equate the additions of this nutrient by fertilization.

2014 ◽  
Vol 50 (4) ◽  
pp. 549-572 ◽  
Author(s):  
V. S. RATHORE ◽  
N. S. NATHAWAT ◽  
B. MEEL ◽  
B. M. YADAV ◽  
J. P. SINGH

SUMMARYThe choice of an appropriate cropping system is critical to maintaining or enhancing agricultural sustainability. Yield, profitability and water use efficiency are important factors for determining suitability of cropping systems in hot arid region. In a two-year field experiment (2009/10–2010/11) on loam sandy soils of Bikaner, India, the production potential, profitability and water use efficiency (WUE) of five cropping systems (groundnut–wheat, groundnut–isabgol, groundnut–chickpea, cluster bean–wheat and mung bean–wheat) each at six nutrient application rate (NAR) i.e. 0, 25, 50, 75, 100% recommended dose of N and P (NP) and 100% NP + S were evaluated. The cropping systems varied significantly in terms of productivity, profitability and WUEs. Averaged across nutrient application regimes, groundnut–wheat rotation gave 300–1620 kg ha−1 and 957–3365 kg ha−1 higher grain and biomass yields, respectively, than other cropping systems. The mean annual net returns were highest for the mung bean–wheat system, which returned 32–57% higher net return than other cropping systems. The mung bean–wheat and cluster bean–wheat systems had higher WUE in terms of yields than other cropping systems. The mung bean–wheat system recorded 35–63% higher WUE in monetary terms compared with other systems. Nutrients application improved yields, profit and WUEs of cropping systems. Averaged across years and cropping systems, the application of 100% NP improved grain yields, returns and WUE by 1.7, 3.9 and 1.6 times than no application of nutrients. The results suggest that the profitability and WUEs of crop production in this hot arid environment can be improved, compared with groundnut–wheat cropping, by substituting groundnut by mung bean and nutrients application.


1991 ◽  
Vol 27 (4) ◽  
pp. 351-364 ◽  
Author(s):  
J. Amir ◽  
J. Krikun ◽  
D. Orion ◽  
J. Putter ◽  
S. Klitman

2021 ◽  
Author(s):  
Leonor Rodriguez-Sinobas ◽  
Freddy Canales-Ide ◽  
Sergio Zubelzu

<p>This study presents a novel method for controlling and monitoring irrigation of urban green areas based on Geographical Information Systems (GIS). The proposed procedure was applied to the Spanish Valdebebas Urban Development, located in Madrid, which comprises 18 ha occupied by urban parks irrigated by subsurface drip irrigation fully automated. Its irrigation network conveys water to 67 different irrigation units, irrigating very heterogeneous plants typology. The GIS model considered the smallest irrigation unit, as the pixel size and it was fed with the information on: discharging flow, irrigated area and irrigation times of each irrigation unit. The study was performed with data from the three irrigation seasons from 2017 to 2019. Likewise, daily information from the weather station located at the urban development, used for the irrigation network operation, was also incorporated into the GIS. The results showed the spatial and temporal variability of the garden coefficients (and water needs) and the water use efficiency. The study also estimate the evolution of irrigation rates and water use efficiency indices under three different climate change forecasting scenarios (namely Representative Concentration Pathways– RCP–45, RCP 6 and RCP85). This method can assist technicians and irrigation managers to make better decisions on operating the parks’ irrigation network.</p>


2016 ◽  
Vol 13 (2) ◽  
pp. 94-107 ◽  
Author(s):  
S Roy ◽  
M Barman ◽  
AM Puste ◽  
SK Gunri ◽  
K Jana

Field experiment was conducted at Instructional Farm, Jaguli (Mohanpur), Bidhan Chandra Krishi Viswavidyalaya, West Bengal, India during two consecutive summer seasons of 2010-11, and 2011-12. The experiment was laid out in split-plot design having 4 levels of irrigation– rainfed without mulch, rainfed with mulch, irrigation at IW (depth of irrigation water) / CPE (Cumulative pan evaporation) ratios of 0.5 and 0.75 in main-plot and 4 inter cropping systems, sole maize, sole mungbean, maize + mungbean (1:1 row ratio) and maize + mungbean (3:2 row ratio) considered as sub-plot treatments replicated thrice. Results revealed that application of irrigation and intercropping systems markedly influenced the growth, yield and yield components (number of cobs/plant, number of grains/cob in case of maize and number of pods/plant and number of seeds/pod in case of mungbean) where the maximum value of these components were recorded with the application of irrigation at IW/CPE ratio 0.75 in sole crop. Maize-mungbean in 3:2 row ratio yielded higher than that of 1:1 intercropping system which might be due to less light interception and more competition for water and nutrition between both the crops. CU of water increased with the increasing levels of irrigation and the maximum value (17.75 kg ha-1 mm- 1) of WUE (water use efficiency) was observed with irrigation at IW: CPE ratio 0.75 under intercropping system of maize : mungbean in 3:2 row ratio followed by IW: CPE ratio 0.50. Among the sole crop, maximum WUE was with IW/CPE ratio 0.75 might be due to more consumption of water corresponding to production potential of maize, while, it was more under rainfed with mulch in mungbean. The relative crowding coefficient (RCC) also revealed both the intercropping systems were advantageous and the land equivalent ratio (LER) increased with the level of irrigation.Thus, maize grown in association with mungbean (3:2 row ratio) were found to be more profitable (B:C ratio of 2.58) with higher monetary advantage as compared to sole crop of maize (B:C ratio of 1.98) with the application of irrigation at IW: CPE ratio of 0.75 in new alluvial zone of West Bengal.SAARC J. Agri., 13(2): 94-107 (2015)


1999 ◽  
Vol 50 (6) ◽  
pp. 1035 ◽  
Author(s):  
T. P. Bolger ◽  
N. C. Turner

There is a perception in the farming and research communities that annual pastures have low produc- tivity and water use, and contribute disproportionately to problems of rising watertables and dryland salinity. Our aim was to determine potential pasture production in relation to water use and the influence of management factors on this relationship. Experiments were initiated at 4 locations along a gradient of 300–1100 mm annual rainfall across the Western Australian agricultural zone. At each site a high input treatment was compared with a low input control. There was a strong linear relationship between water use and pasture production up to 440 mm of growing- season water use. After 30 mm of water use the potential pasture production was 30 kg/ha.mm. An upper limit to pasture production may be reached at about 12 000 kg/ha in this environment due to rainfall distribution patterns and soil water holding capacity in the root-zone. Although pasture production was increased by as much as 3500 kg/ha, water use was generally similar or only slightly more for high input compared with control plots. The marginally higher water use by the high input pastures resulted in an extra 18 mm of water extracted from the subsoil at one location by the end of the third season. A drier subsoil may provide a buffer for storing excess rainfall and reduce deep drainage. Estimated drainage was small at low rainfall sites so even marginal increases in water use by highly productive annual pastures could play a significant role in reducing water loss to deep drainage and mitigating water-table rise and secondary salinisation in low rainfall regions. Management practices aimed at promoting early growth and adequate leaf area should maximise water use, water use efficiency, and yield. The linear relationship defining potential pasture production provides a useful benchmark to farmers.


Agronomy ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 668 ◽  
Author(s):  
Nicola Michelon ◽  
Giuseppina Pennisi ◽  
Nang Ohn Myint ◽  
Francesco Orsini ◽  
Giorgio Gianquinto

Water use efficiency is a main research target in agriculture, which consumes 70% of global freshwater. This study aimed at identifying sustainable water management strategies for the lettuce crop in a semi-arid climate. Three independent experiments were carried out on a commercial variety of lettuce (Lactuca sativa L.) by applying different irrigation levels based on crop evapotranspiration (ETc), estimated through both the Hargreaves–Samani and Penman–Monteith equations. In the first experiment, one treatment was also guided by soil moisture sensors. In the second and third experiments, a factorial combination was used, combining the different irrigation levels with two soil mulching treatments, namely soil without mulch, and soil mulched with dried rice straw residues. The application of different irrigation levels significantly affected plant growth, yield, and physiology. Both the adoption of sensors for guiding irrigation and the application of mulching with straw promoted higher yield. As the irrigation water level was reduced, the WUE (water use efficiency) increased. WUE was also increased by covering the soil with mulch. The experiments point out that accurate management of irrigation water using a drip irrigation system associated with soil mulching increases yield and improves the WUE of lettuce crops in the Central Dry Zone, Myanmar.


2003 ◽  
Vol 48 (7) ◽  
pp. 191-196 ◽  
Author(s):  
P.J. Goyne ◽  
G.T. McIntyre

The Cotton and Grains Adoption Program of the Queensland Rural Water Use Efficiency Initiative is targeting five major irrigation regions in the state with the objective to develop better irrigation water use efficiency (WUE) through the adoption of best management practices in irrigation. The major beneficiaries of the program will be industries, irrigators and local communities. The benefits will flow via two avenues: increased production and profit resulting from improved WUE and improved environmental health as a consequence of greatly reduced runoff of irrigation tailwater into rivers and streams. This in turn will reduce the risk of nutrient and pesticide contamination of waterways. As a side effect, the work is likely to contribute to an improved public image of the cotton and grain industries. In each of the five regions, WUE officers have established grower groups to assist in providing local input into the specific objectives of extension and demonstration activities. The groups also assist in developing growersÕ perceptions of ownership of the work. Activities are based around four on-farm demonstration sites in each region where irrigation management techniques and hardware are showcased. A key theme of the program is monitoring water use. This is applied both to on-farm storage and distribution as well as to application methods and in-field management. This paper describes the project, its activities and successes.


2005 ◽  
Vol 45 (9) ◽  
pp. 1181 ◽  
Author(s):  
G. Kaine ◽  
D. Bewsell ◽  
A. Boland ◽  
C. Linehan

Market research was conducted to develop an extension program targeting the specific irrigation management needs of growers in the stone and pome fruit industry within the Goulburn Valley, Victoria. The process of integrating market research with extension practice proved challenging, as it required the development of an extension program that was fundamentally different from what was originally envisaged. However, it was essential to achieve this integration in order to meet the original objectives for the extension program as set by the funding body. We found, in most cases, that the motivation for stone and pome fruit growers in the Goulburn Valley to change orchard irrigation management practices was not because they needed to save water, or to increase water use efficiency. Instead, growers were changing practices in order to save time irrigating, improve the scope for managerial flexibility in the orchard, or when redeveloping their orchard to a closer planting design. These findings suggest that growers in the Goulburn Valley are more likely to respond to an extension program consistent with these motivations rather than a program promoting water use efficiency.


Sign in / Sign up

Export Citation Format

Share Document