scholarly journals After-ripening, Stratification, and Perigynia Removal Enhance Pennsylvania Sedge Germination

2011 ◽  
Vol 21 (2) ◽  
pp. 187-192 ◽  
Author(s):  
Esther E. McGinnis ◽  
Mary H. Meyer

Pennsylvania sedge (Carex pensylvanica) has horticultural and restoration potential, but the achenes are difficult to germinate due to complex dormancy requirements. This study identified treatments to overcome physiological dormancy and determined light and temperature requirements for optimum germination. We first tested the effects of perigynia removal and light on achene germination. In the second experiment, achenes were subjected to varying durations of dry-cold or dry-warm storage conditions and a presowing soak in gibberellic acid (GA3). In a third experiment, we studied whether storage conditions, cold stratification, and sowing temperatures affected germination. Pennsylvania sedge germination was improved by dry-warm storage, perigynia removal, cold stratification, and germination in light.

Botany ◽  
2017 ◽  
Vol 95 (2) ◽  
pp. 147-152 ◽  
Author(s):  
Danping Song ◽  
Ganesh K. Jaganathan ◽  
Yingying Han ◽  
Baolin Liu

There are several different opinions regarding dormancy in tea (Camellia sinensis L.), but there is no strong evidence available to conclude whether or not these seeds are dormant. Freshly matured tea seeds collected from Hangzhou, China, at the natural dispersal time did not germinate in light at daily alternative temperature regimes of 10/15, 15/20, 20/25, or 25/35 °C, or at a constant temperature of 25 °C. Seeds were permeable to water and the embryos did not grow prior to radicle emergence, thus, the seeds have no physical, morphological, or morphophysiological dormancy. When cold-stratified at 4 °C for 1, 2, and 3 months, 64%, 88%, and 93% of the seeds germinated, respectively. Intact fresh seeds failed to germinate after treatment with 0, 10, 500, and 1000 ppm GA3, whereas 3%, 4%, 61%, and 86% of cracked seeds germinated, respectively. Thus, the seeds have nondeep and intermediate physiological dormancy. Seeds cold-stratified for 2 months that were buried at soil depths of 0, 1, and 5 cm in pots showed that seeds at 1 cm depth established significantly higher number of seedlings (P < 0.05) than at other two depths. Because tea seeds are susceptible to summer temperature drying, these seeds do not establish a persistent seed bank.


2005 ◽  
Vol 15 (4) ◽  
pp. 349-356 ◽  
Author(s):  
Carol C. Baskin ◽  
Jerry M. Baskin ◽  
Alvin Yoshinaga ◽  
Ken Thompson

This study addressed the difficulty of germinating drupelets (hereafter seeds) in the multi-seeded stony dispersal units (drupes) of Leptecophylla tameiameiae (Ericaceae). Embryos in fresh seeds were 77% the length of the endosperm, and seeds inside the intact drupes imbibed water. We monitored germination at 15/6, 20/10 and 25/15°C for 162 weeks, after which each drupe was cut open and ungerminated seeds counted. Drupes contained 1–6 seeds, and the total number of seeds in all treatments and controls was 1977, with 20, 29, 25, 18, 7 and <1% of them occurring in one-, two-, three-, four-, five- and six-seeded drupes, respectively. The percentage of seeds germinating in one-, two-, three-, four-, five- and six-seeded drupes was 74, 66, 65, 72, 56 and 0, respectively. Neither warm nor cold stratification for 6 or 12 weeks significantly increased germination percentages, compared to controls incubated continuously at 25/15°C for 162 weeks, where 72% of the seeds in the drupes germinated. At 25/15°C, 24–49 weeks were required for 20% of the seeds to germinate. Warm followed by cold stratification did not promote germination, and there was no widening of the temperature range for germination. Like seeds of other species known to have deep physiological dormancy (PD), those of L. tameiameiae required extended periods of time (16 to ≥162 weeks) to come out of dormancy and germinate, gibberellic acid (GA3) did not promote germination and excised embryos failed to grow. Thus, we conclude that seeds of L. tameiameiae have deep PD. However, unlike seeds of other species with deep PD, those of L. tameiameiae required an extensive period of warm rather than of cold stratification to come out of dormancy. It is suggested that a subtype a (seeds require a long period of cold stratification to come out of dormancy) and a subtype b (seeds require a long period of exposure to warm stratification to come out of dormancy) of deep PD be recognized in the Nikolaeva formula system for classifying seed dormancy.


2000 ◽  
Vol 77 (12) ◽  
pp. 1769-1776 ◽  
Author(s):  
Jeffrey L Walck ◽  
Carol C Baskin ◽  
Jerry M Baskin

Seeds of the eastern North American herbaceous polycarpic perennial Thalictrum mirabile Small have differentiated but underdeveloped (small) embryos that are physiologically dormant at maturity in September. Physiological dormancy was broken effectively by cold stratification at 1°C, but embryos required temperatures [Formula: see text]15:6°C for growth after physiological dormancy was broken. Gibberellic acid substituted for cold stratification. Breaking of physiological dormancy in seeds exposed to natural temperatures in a greenhouse occurred during winter, and embryo growth and germination occurred in late winter - early spring. Furthermore, seeds in the greenhouse remained viable until the second and third (spring) germination seasons. Thus, T. mirabile seeds have the capacity to form a short-lived persistent soil seed bank. Buried seeds of T. mirabile apparently go through an annual dormancy-nondormancy cycle. Seeds buried in September 1994 were nondormant when exhumed in April 1995 and April 1996 and incubated in light at 25:15°C for 2 weeks, but they were dormant in June 1995 and September 1995. Seeds of T. mirabile have nondeep simple morphophysiogical dormancy. This is the first report of nondeep simple morphophysiological dormancy being broken by cold, and not by warm, stratification.


2020 ◽  
Vol 48 (2) ◽  
pp. 289-295
Author(s):  
Valentina Mursaliyeva ◽  
Akjunus Imanbayeva ◽  
Rano Parkhatova

The results of evaluating the laboratory seed germination of endemic Allochrusa gypsophiloides (Turkestan soap root), depending on storage conditions in combination with gibberellic acid treatment (GA3), are presented. In dry storage, control seeds were characterised by a long after-ripening period and a fluctuating germination behaviour upon removal from storage, with a maximum value of 23%. The sensitivity of seeds to GA3 during dry storage varied significantly, with two germination peaks at 5-7 months, and 12 months (37.5 and 50% germination, respectively). Cold stratification and cryo-preservation accelerated seed after-ripening, promoted germination synchronisation and increased seed sensitivity to GA3. The cold stratification of seeds increased germination four months earlier than during dry storage. GA3 increased germination from 16.7 and 18.3% for the control to 37.5 and 45% for seeds cryopreserved for 5 and 12 months, respectively. We recommend cryopreserving Turkestan soap root seeds to avoid viability loss and to then germinate the seeds after pretreatment with GA3.


Agronomy ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1765
Author(s):  
Wei Zhang ◽  
Lian-Wei Qu ◽  
Jun Zhao ◽  
Li Xue ◽  
Han-Ping Dai ◽  
...  

The innate physiological dormancy of Tulipa thianschanica seeds ensures its survival and regeneration in the natural environment. However, the low percentage of germination restricts the establishment of its population and commercial breeding. To develop effective ways to break dormancy and improve germination, some important factors of seed germination of T. thianschanica were tested, including temperature, gibberellin (GA3) and/or kinetin (KT), cold stratification and sowing depth. The percentage of germination was as high as 80.7% at a constant temperature of 4 °C, followed by 55.6% at a fluctuating temperature of 4/16 °C, and almost no seeds germinated at 16 °C, 20 °C and 16/20 °C. Treatment with exogenous GA3 significantly improved the germination of seeds, but KT had a slight effect on the germination of T. thianschanica seeds. The combined treatment of GA3 and KT was more effective at enhancing seed germination than any individual treatment, and the optimal hormone concentration for the germination of T. thianschanica seeds was 100 mg/L GA3 + 10 mg/L KT. In addition, it took at least 20 days of cold stratification to break the seed dormancy of T. thianschanica. The emergence of T. thianschanica seedlings was the highest with 82.4% at a sowing depth of 1.5 cm, and it decreased significantly at a depth of >3.0 cm. This study provides information on methods to break dormancy and promote the germination of T. thianschanica seeds.


Horticulturae ◽  
2021 ◽  
Vol 7 (11) ◽  
pp. 490
Author(s):  
Saeng Geul Baek ◽  
Jin Hyun Im ◽  
Myeong Ja Kwak ◽  
Cho Hee Park ◽  
Mi Hyun Lee ◽  
...  

This study aimed to determine the type of seed dormancy and to identify a suitable method of dormancy-breaking for an efficient seed viability test of Lysimachia coreana Nakai. To confirm the effect of gibberellic acid (GA3) on seed germination at different temperatures, germination tests were conducted at 5, 15, 20, 25, 20/10, and 25/15 °C (12/12 h, light/dark), using 1% agar with 100, 250, and 500 mg·L−1 GA3. Seeds were also stratified at 5 and 25/15 °C for 6 and 9 weeks, respectively, and then germinated at the same temperature. Seeds treated with GA3 demonstrated an increased germination rate (GR) at all temperatures except 5 °C. The highest GR was 82.0% at 25/15 °C and 250 mg·L−1 GA3 (4.8 times higher than the control (14.0%)). Additionally, GR increased after cold stratification, whereas seeds did not germinate after warm stratification at all temperatures. After cold stratification, the highest GR was 56.0% at 25/15 °C, which was lower than the GR observed after GA3 treatment. We hypothesized that L. coreana seeds have a non-deep physiological dormancy and concluded that 250 mg·L−1 GA3 treatment is more effective than cold stratification (9 weeks) for L. coreana seed-dormancy-breaking.


2009 ◽  
Vol 19 (2) ◽  
pp. 115-123 ◽  
Author(s):  
Filip Vandelook ◽  
Nele Bolle ◽  
Jozef A. Van Assche

AbstractA low-temperature requirement for dormancy break has been observed frequently in temperate-climate Apiaceae species, resulting in spring emergence of seedlings. A series of experiments was performed to identify dormancy-breaking requirements of Aegopodium podagraria, a nitrophilous perennial growing mainly in mildly shaded places. In natural conditions, the embryos in seeds of A. podagraria grow in early winter. Seedlings were first observed in early spring and seedling emergence peaked in March and April. Experiments using temperature-controlled incubators revealed that embryos in seeds of A. podagraria grow only at low temperatures (5°C), irrespective of a pretreatment at higher temperatures. Seeds did not germinate immediately after embryo growth was completed, instead an additional cold stratification period was required to break dormancy completely. Once dormancy was broken, seeds germinated at a range of temperatures. Addition of gibberellic acid (GA3) had a positive effect on embryo growth in seeds incubated at 10°C and at 23°C, but it did not promote germination. Since seeds of A. podagraria have a low-temperature requirement for embryo growth and require an additional chilling period after completion of embryo growth, they exhibit characteristics of deep complex morphophysiological dormancy.


2006 ◽  
Vol 6 (4) ◽  
pp. 723-733 ◽  
Author(s):  
Solomon I. Shibairo . ◽  
Paul Demo . ◽  
Jackson N. Kabira . ◽  
Peter Gildemacher . ◽  
Esther Gachango . ◽  
...  

2020 ◽  
Vol 30 (3) ◽  
pp. 199-205
Author(s):  
Tracy S. Hawkins

AbstractQuercus species are ecologically and economically important components of deciduous forests of the eastern United States. However, knowledge pertinent to a thorough understanding of acorn germination dynamics for these species is lacking. The objectives of this research were to determine dormancy break and germination requirements for acorns of two eastern United States bottomland species, Quercus nigra and Quercus phellos (Section Lobatae), and to present results within ecological and phylogenetic contexts. Three replicates of 50 acorns of each species received 0 (control), 6, 12 or 18 weeks of cold stratification, followed by incubation in alternating temperature regimes of 15/6, 20/10, 25/15 and 30/20°C. Eighteen weeks of cold stratification were not sufficient for dormancy break in Q. nigra acorns. Cumulative germination percentages at 4 weeks of incubation were ≥77%, but only in incubation temperatures of 25/15 and 30/20°C. Dormancy break in Q. phellos acorns was achieved with 18 weeks of cold stratification, and cumulative germination percentages were ≥87% at 4 weeks of incubation in all test temperature regimes. Gibberellic acid solutions were not an effective substitute for cold stratification in either species. Phylogenetically, Q. nigra and Q. phellos are closely related species and, ecologically, both grow in the same habitat. Acorns of both species possess deep physiological dormancy (PD), but dormancy break and germination requirements differ in acorns of these two Quercus species.


Sign in / Sign up

Export Citation Format

Share Document