Germination of drupelets in multi-seeded drupes of the shrub Leptecophylla tameiameiae (Ericaceae) from Hawaii: a case for deep physiological dormancy broken by high temperatures

2005 ◽  
Vol 15 (4) ◽  
pp. 349-356 ◽  
Author(s):  
Carol C. Baskin ◽  
Jerry M. Baskin ◽  
Alvin Yoshinaga ◽  
Ken Thompson

This study addressed the difficulty of germinating drupelets (hereafter seeds) in the multi-seeded stony dispersal units (drupes) of Leptecophylla tameiameiae (Ericaceae). Embryos in fresh seeds were 77% the length of the endosperm, and seeds inside the intact drupes imbibed water. We monitored germination at 15/6, 20/10 and 25/15°C for 162 weeks, after which each drupe was cut open and ungerminated seeds counted. Drupes contained 1–6 seeds, and the total number of seeds in all treatments and controls was 1977, with 20, 29, 25, 18, 7 and <1% of them occurring in one-, two-, three-, four-, five- and six-seeded drupes, respectively. The percentage of seeds germinating in one-, two-, three-, four-, five- and six-seeded drupes was 74, 66, 65, 72, 56 and 0, respectively. Neither warm nor cold stratification for 6 or 12 weeks significantly increased germination percentages, compared to controls incubated continuously at 25/15°C for 162 weeks, where 72% of the seeds in the drupes germinated. At 25/15°C, 24–49 weeks were required for 20% of the seeds to germinate. Warm followed by cold stratification did not promote germination, and there was no widening of the temperature range for germination. Like seeds of other species known to have deep physiological dormancy (PD), those of L. tameiameiae required extended periods of time (16 to ≥162 weeks) to come out of dormancy and germinate, gibberellic acid (GA3) did not promote germination and excised embryos failed to grow. Thus, we conclude that seeds of L. tameiameiae have deep PD. However, unlike seeds of other species with deep PD, those of L. tameiameiae required an extensive period of warm rather than of cold stratification to come out of dormancy. It is suggested that a subtype a (seeds require a long period of cold stratification to come out of dormancy) and a subtype b (seeds require a long period of exposure to warm stratification to come out of dormancy) of deep PD be recognized in the Nikolaeva formula system for classifying seed dormancy.

2012 ◽  
Vol 40 (2) ◽  
pp. 183 ◽  
Author(s):  
Elias PIPINIS ◽  
Elias MILIOS ◽  
Olga MAVROKORDOPOULOU ◽  
Christina GKANATSIOU ◽  
Maria ASLANIDOU ◽  
...  

Sexual propagation of Prunus mahaleb is difficult due to seed dormancy. To overcome dormancy and maximize germination, various pretreatments have been applied, including stratification (warm and cold), gibberellic acid (GA3), sulfuric acid scarification (AS), and endocarp removal. The results show that warm stratification (WS) prior to cold stratification (CS) does not improve seed germination and a long period of WS (3 months) is disastrous for germination. CS alone (up to 4 months) has been found to hasten and increase seed germination. Pretreatment of the seeds with exogenous GA3, during the CS period, has been observed to result in significantly higher seed germination. AS of seeds for 45 minutes prior to GA3 (1000 ppm for 24 hours) plus CS (up to 1 month) pretreatment has been considered to reduce the mechanical resistance of endocarp and improve germination. However, extended time of AS (180 minutes) prior to GA3 plus CS pretreatment has been found to harm the seeds. The removal of endocarp has been noted to significantly improve germination. Seeds without endocarp, which were pretreated with GA3 (1000 or 2000 ppm for 24 hours) and then cold stratified for 1 month, have been noted to exhibit the highest germination percentages.


2021 ◽  
Vol 45 (1) ◽  
Author(s):  
Hye Jin Oh ◽  
Un Seop Shin ◽  
Seung Youn Lee ◽  
Sang Yong Kim ◽  
Mi Jin Jeong

Abstract Background Euphorbia jolkinii Boiss. is a perennial species native to Jeju Island and the southern coastal area of Korea. Particularly on Jeju Island, the yellow flowers of E. jolkinii Boiss. have a high ornamental value because of their contrast with basalt. This study was conducted to investigate the effects of different temperatures (5, 15, 20, and 25 °C) and gibberellic acid (GA3) concentrations (0, 10, 100, or 1000 mg/L) on seed dormancy and germination of E. jolkinii. In addition, we classified the seed dormancy type and compared types with those of other species in the same genus. Results The number of seeds with viable embryos and endosperms was approximately 66%. The final germination percentages at 5, 15, 20, and 25 °C were 51.7%, 83.5%, 2.6%, and 0.0%, respectively. In GA3 concentration experiments, the final germination percentages of 0, 10, 100, and 1000 mg/L were 83.5%, 91.7%, 79.1%, and 83.4%, respectively, at 15 °C conditions, and 0.0%, 6.9%, 13.2%, and 27.3%, respectively, at 25 °C. Conclusions Germination improved at temperatures of 15 °C or lower. Furthermore, GA3 treatment effectively reduced germination times. Thus, the seeds of E. jolkinni were classified as having non-deep physiological dormancy.


Agronomy ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1765
Author(s):  
Wei Zhang ◽  
Lian-Wei Qu ◽  
Jun Zhao ◽  
Li Xue ◽  
Han-Ping Dai ◽  
...  

The innate physiological dormancy of Tulipa thianschanica seeds ensures its survival and regeneration in the natural environment. However, the low percentage of germination restricts the establishment of its population and commercial breeding. To develop effective ways to break dormancy and improve germination, some important factors of seed germination of T. thianschanica were tested, including temperature, gibberellin (GA3) and/or kinetin (KT), cold stratification and sowing depth. The percentage of germination was as high as 80.7% at a constant temperature of 4 °C, followed by 55.6% at a fluctuating temperature of 4/16 °C, and almost no seeds germinated at 16 °C, 20 °C and 16/20 °C. Treatment with exogenous GA3 significantly improved the germination of seeds, but KT had a slight effect on the germination of T. thianschanica seeds. The combined treatment of GA3 and KT was more effective at enhancing seed germination than any individual treatment, and the optimal hormone concentration for the germination of T. thianschanica seeds was 100 mg/L GA3 + 10 mg/L KT. In addition, it took at least 20 days of cold stratification to break the seed dormancy of T. thianschanica. The emergence of T. thianschanica seedlings was the highest with 82.4% at a sowing depth of 1.5 cm, and it decreased significantly at a depth of >3.0 cm. This study provides information on methods to break dormancy and promote the germination of T. thianschanica seeds.


Horticulturae ◽  
2021 ◽  
Vol 7 (11) ◽  
pp. 490
Author(s):  
Saeng Geul Baek ◽  
Jin Hyun Im ◽  
Myeong Ja Kwak ◽  
Cho Hee Park ◽  
Mi Hyun Lee ◽  
...  

This study aimed to determine the type of seed dormancy and to identify a suitable method of dormancy-breaking for an efficient seed viability test of Lysimachia coreana Nakai. To confirm the effect of gibberellic acid (GA3) on seed germination at different temperatures, germination tests were conducted at 5, 15, 20, 25, 20/10, and 25/15 °C (12/12 h, light/dark), using 1% agar with 100, 250, and 500 mg·L−1 GA3. Seeds were also stratified at 5 and 25/15 °C for 6 and 9 weeks, respectively, and then germinated at the same temperature. Seeds treated with GA3 demonstrated an increased germination rate (GR) at all temperatures except 5 °C. The highest GR was 82.0% at 25/15 °C and 250 mg·L−1 GA3 (4.8 times higher than the control (14.0%)). Additionally, GR increased after cold stratification, whereas seeds did not germinate after warm stratification at all temperatures. After cold stratification, the highest GR was 56.0% at 25/15 °C, which was lower than the GR observed after GA3 treatment. We hypothesized that L. coreana seeds have a non-deep physiological dormancy and concluded that 250 mg·L−1 GA3 treatment is more effective than cold stratification (9 weeks) for L. coreana seed-dormancy-breaking.


Botany ◽  
2017 ◽  
Vol 95 (2) ◽  
pp. 147-152 ◽  
Author(s):  
Danping Song ◽  
Ganesh K. Jaganathan ◽  
Yingying Han ◽  
Baolin Liu

There are several different opinions regarding dormancy in tea (Camellia sinensis L.), but there is no strong evidence available to conclude whether or not these seeds are dormant. Freshly matured tea seeds collected from Hangzhou, China, at the natural dispersal time did not germinate in light at daily alternative temperature regimes of 10/15, 15/20, 20/25, or 25/35 °C, or at a constant temperature of 25 °C. Seeds were permeable to water and the embryos did not grow prior to radicle emergence, thus, the seeds have no physical, morphological, or morphophysiological dormancy. When cold-stratified at 4 °C for 1, 2, and 3 months, 64%, 88%, and 93% of the seeds germinated, respectively. Intact fresh seeds failed to germinate after treatment with 0, 10, 500, and 1000 ppm GA3, whereas 3%, 4%, 61%, and 86% of cracked seeds germinated, respectively. Thus, the seeds have nondeep and intermediate physiological dormancy. Seeds cold-stratified for 2 months that were buried at soil depths of 0, 1, and 5 cm in pots showed that seeds at 1 cm depth established significantly higher number of seedlings (P < 0.05) than at other two depths. Because tea seeds are susceptible to summer temperature drying, these seeds do not establish a persistent seed bank.


2022 ◽  
Vol 12 ◽  
Author(s):  
Peng Gao ◽  
Jie Dong ◽  
Sihan Wang ◽  
Wuhua Zhang ◽  
Tao Yang ◽  
...  

Rosa rugosa Thunb. has been explored multi-function in medicinal, edible, cosmetic, ornamental and ecological etc. However, R. rugosa natural populations have recently declined substantially in China, besides of global climate change, this species also has the defect of limiting the reproduction of itself such as the hard-to-release seed dormancy. In this study, only 30% of R. rugosa seeds were viable, and the others were incompletely developed or diseased seeds. Without stratification, morphologically complete viable seeds imbibed water but those seeds could not germinate even after seed husk removal under suitable condition to exhibit a physiological dormancy. After cold (4°C) and warm (18 ± 2°C) stratification, macromolecular substances containing carbon or nitrogen accumulated, and respiration, antioxidant enzyme activity, and gibberellin (GA3) /abscisic acid (ABA) and auxin (IAA)/ABA ratios increased significantly in seeds. Water absorption also increased as endocarps softened. Thus, physiological dormancy of seed was broken. Although warm and cold stratification increased separation between endocarp and embryo, the endocarp binding force was removed insufficiently, because only 10.20% of seeds germinated. Therefore, stratified seeds were treated with simulated bird digestion. Then, folds and cracks in loosened endocarps increased permeability, and water absorption rate increased to 64.43% compare to 21.14% in cold and warm stratification treatment. With simulated digestion, 24.20% of radicles broke through the endocarp with plumules and cambiums to develop into seedlings. Thus, the seed dormancy type of R. rugosa is physiological as seeds imbibed water and possessed fully developed embryos with a low growth potential in combination with a mechanical constraint from the endocarp. Cold stratification helped remove physiological dormancy, and additional warm stratification accelerated the process. The optimal stratification treatment was 4°C for 45 days followed by 18 ± 2°C for 15 days. After warm and cold stratification, simulated bird digestion broke the mechanical constraint from the seed covering layers. Based on this research, production of R. rugosa seedlings can be greatly increased to help protect the species from further declines.


Plants ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 160
Author(s):  
Gyeong Ho Jang ◽  
Jae Min Chung ◽  
Yong Ha Rhie ◽  
Seung Youn Lee

Veronicastrum sibiricum is a perennial species distributed in Korea, Japan, Manchuria, China, and Siberia. This study aimed to determine the requirements for germination and dormancy break of V. sibiricum seeds and to classify the kind of seed dormancy. Additionally, its class of dormancy was compared with other Veronicastrum and Veronica species. V. sibiricum seeds were permeable to water and had a mature embryo during seed dispersal. In field conditions, germination was prevented by physiological dormancy, which was, however, relieved by March of the next year, allowing the start of germination when suitable environmental conditions occurred. In laboratory experiments, the seeds treated with 0, 2, 4, 8, and 12 weeks of cold stratification (4 °C) germinated to 0, 79, 75, 72, and 66%, respectively. After the GA3 treatment (2.887 mM), ≥90% of the seeds germinated during the four incubation weeks at 20/10 °C. Thus, 2.887 mM GA3 and at least two weeks at 4 °C were effective in breaking physiological dormancy and initiating germination. Therefore, the V. sibiricum seeds showed non-deep physiological dormancy (PD). Previous research, which determined seed dormancy classes, revealed that Veronica taxa have PD, morphological (MD), or morphophysiological seed dormancy (MPD). The differences in the seed dormancy classes in the Veronicastrum-Veronica clade suggested that seed dormancy traits had diverged. The results provide important data for the evolutionary ecological studies of seed dormancy and seed-based mass propagation of V. sibiricum.


2015 ◽  
Vol 43 (2) ◽  
pp. 439-446
Author(s):  
Jeremi KOŁODZIEJEK ◽  
Jacek PATYKOWSKI

The effects of cold stratification and gibberellic acid (GA3) on dormancy breaking for seeds of the annual halophyte species Juncus ranarius were tested. Germination percentage and recovery responses of salt stressed seeds were also tested. Freshly collected seeds germinated slowly under all incubation conditions. Thus, the seeds of J. ranarius have physiological dormancy, e.g. they are water permeable, have a fully developed embryo and require cold stratification to come out of dormancy. Furthermore, promotion of germination by GA3 after-ripening in dry storage also indicated that these seeds have non-deep physiological dormancy. In general, the higher the GA3 concentration, the more germination occurred within the studied range. Juncus ranarius demonstrated a germination preference for light. The highest germination percentage and rate of germination were recorded under constant light conditions at 22 °C after 24 weeks of cold stratification. In saline solutions, the highest percentage of germination was obtained at 25 mM L-1 NaCl, and further increase in salinity resulted in a gradual decrease in germination. However, ungerminated seeds were not damaged by salt, showing a high level of recovery. The greater the reduction in salinity, the better the germination rate became. It was concluded that dormancy could be completely broken by cold stratification, indicating spring germination. Juncus ranarius can grow well at lower NaCl concentrations under constant light conditions at 22 °C.


Sign in / Sign up

Export Citation Format

Share Document