scholarly journals Evaluation of Irrigation Threshold and Duration for Tomato Grown in a Silt Loam Soil

2011 ◽  
Vol 21 (4) ◽  
pp. 466-473 ◽  
Author(s):  
Timothy Coolong ◽  
Susmitha Surendran ◽  
Richard Warner

Soil moisture-based, high-frequency, low-volume (pulsed) irrigation management strategies have saved water while maintaining yields of vegetables grown in coarse textured soils. However, little is known regarding the efficacy of soil moisture-based pulsed irrigation on finer textured soils. Therefore, five tensiometer-based, automated irrigation treatments were tested for tomato (Solanum lycopersicum) grown in a Maury silt loam soil in 2009 and 2010 in Lexington, KY. Irrigation treatments consisted of paired-tensiometer systems with on/off setpoints of −30/−10, −30/−25, −45/−10, and −45/40 kPa in both 2009 and 2010 and a single-tensiometer system with setpoints of −35 kPa in 2009 and −40 kPa in 2010. In 2009, the pulsed systems (−30/−25, −45/−40, and −35 kPa) irrigated more frequently but for a shorter duration than non-pulsed systems (−30/−10 and −45/−10 kPa). Soil moisture measurements in 2009 suggested that probes set at a depth of 6 inches were more closely matched to irrigation setpoints than those at 12 inches. In both years, the −45/−40 kPa setpoint treatment used the least amount of water while maintaining total marketable yields that were not significantly different from other treatments. Yields were significantly higher in 2009 than 2010, though atypical air temperatures in 2010 may have been the cause. Leaf water potential and relative water content were measured predawn and midday throughout the growing season in 2009 and 2010. Leaf water potential was not significantly affected by the treatments in either year, though leaf relative water content was affected in 2010. In this trial, an automated, soil moisture-based irrigation system maintained yields and saved water when compared with a non-pulsed irrigation system using similar irrigation setpoints for tomato grown in a silt loam soil.

2015 ◽  
Vol 10 (4) ◽  
pp. 208 ◽  
Author(s):  
Lorenzo Barbanti ◽  
Ahmad Sher ◽  
Giuseppe Di Girolamo ◽  
Elio Cirillo ◽  
Muhammad Ansar

A better understanding of plant mechanisms in response to drought is a strong premise to achieving high yields while saving unnecessary water. This is especially true in the case of biomass crops for non-food uses (energy, fibre and forage), grown with limited water supply. In this frame, we investigated growth and physiological response of two genotypes of biomass sorghum (<em>Sorghum bicolor</em> (L.) Moench) to contrasting levels of soil moisture in a pot experiment carried out in a greenhouse. Two water regimes (high and low water, corresponding to 70% and 30% field capacity) were applied to JS-2002 and Trudan-8 sorghum genotypes, respectively bred for dry sub-tropical and mild temperate conditions. Two harvests were carried out at 73 and 105 days after seeding. Physiological traits (transpiration, photosynthesis and stomatal conductance) were assessed in four dates during growth. Leaf water potential, its components and relative water content were determined at the two harvests. Low watering curbed plant height and aboveground biomass to a similar extent (ca. 􀀀70%) in both genotypes. JS-2002 exhibited a higher proportion of belowground to aboveground biomass, <em>i.e</em>., a morphology better suited to withstand drought. Despite this, JS-2002 was more affected by low water in terms of physiology: during the growing season, the average ratio in transpiration, photosynthesis and stomatal conductance between droughty and well watered plants was, respectively, 0.82, 0.80 and 0.79 in JS-2002; 1.05, 1.08 and 1.03 in Trudan-8. Hence Trudan-8 evidenced a ca. 20% advantage in the three traits. In addition, Trudan-8 could better exploit abundant moisture (70% field capacity), increasing aboveground biomass and water use efficiency. In both genotypes, drought led to very low levels of leaf water potential and relative water content, still supporting photosynthesis. Hence, both morphological and physiological characteristics of sorghum were involved in plant adaptation to drought, in accordance with previous results. Conversely, the common assumption that genotypes best performing under wet conditions are less suited to face drought was contradicted by the results of the two genotypes in our experiment. This discloses a potential to be further exploited in programmes of biomass utilization for various end uses, although further evidence at greenhouse and field level is needed to corroborate this finding.


1995 ◽  
Vol 46 (1) ◽  
pp. 111-118 ◽  
Author(s):  
J.C. Diaz-Pérez ◽  
K.A. Shackel ◽  
E.G. Sutter

1979 ◽  
Vol 27 (3) ◽  
pp. 285 ◽  
Author(s):  
JR Withers

Casuarina littoralis seedlings are inherently more drought-resistant than Eucalyptus ovata seedlings over a wide range of environmental conditions. Moderate shade pre-treatment (30% of full daylight) decreased the drought resistance of seedlings of E. ovata, Acacia pycnantha and C. stricta but not that of C. littoralis seedlings. Deep shade pre-treatment (8 % of full daylight) decreased the drought resistance of all species and was associated with decreased rootlshoot ratios. Both shaded and non-shaded C. littoralis seedlings closed stomata at higher relative water contents (about 80% and 88 % respectively) than did E. ovata seedlings (about 36 % and 63 % respectively). Shading decreased the relative water content at which E. ovata closed stomata and reduced the relative decrease in water potential which occurred with unit decreases in relative water content. When E. ovata and C. littoralis seedlings were grown in competition, the larger E. ovata dominated the drought response of plants under both high and low light conditions. E. ovata rapidly depleted moisture supplies thereby subjecting C. littoralis to greater stress and earlier death than it experienced in monoculture. C. littoralis seedlings grown and droughted in competition with E. ovata exhibited smaIIer decreases in water potential per unit decrease in relative water content than seedlings grown in monoculture. The height growth of E. ovata grown in monoculture and in competition with C. littoralis was reduced for at least 10-15 weeks after the wilting treatment, but height growth of C. littoralis was not affected. Eucalypts wilted at higher water potentials (-4.3 MPa) than did C. littoralis seedlings (- 6.3 MPa). It is suggested that the replacement of E. ovata by C. littoralis at Ocean Grove, Vic. may be partly due to the differential effects of shading on the drought resistance of seedlings which become established in the grass sward of canopy gaps.


2001 ◽  
Vol 81 (1) ◽  
pp. 45-52 ◽  
Author(s):  
R H Azooz ◽  
M A Arshad

In areas of the northwestern Canadian Prairies, barley and canola are grown in a short growing season with high rainfall variability. Excessively dry soil in conventional tillage (CT) in dry periods and excessively wet soil in no-tillage (NT) in wet periods could cause a significant decrease in crop production by influencing the availability of soil water. The effects of CT, NT and NT with a 7.5-cm residue-free strip on the planting rows (NTR) on soil water drying (–dW/dt) and recharge (dW/dt) rates were studied in 1992 and 1993 during wet and dry periods to evaluate the impact of NTR, NT and CT systems on soil moisture condition. The soils, Donnelly silt loam and Donnelly sandy loam (both Gray Luvisol) were selected and soil water content by depth was measured by time domain reflectometry. Water retained at 6 matric potentials from –5 to –160 kPa were observed. In the field study, –dW/dt was significantly greater in CT than in NT in the silt loam for the 0- to 30-cm layer during the first 34 d after planting in 1992. The 0- to 30-cm soil layer in CT and NTR dried faster than in NT during a period immediately following heavy rainfall in the silt loam in 1993. The drying coefficient (–Kd ) was significantly greater in CT and NTR than in NT in the silt loam soil in 1993 and in the sandy loam soil in 1992 in the top 30-cm depth. The recharge coefficient (Kr) was significantly greater in NT and NTR than in CT for the silt loam soil. The NTR system increased the –dW/dt by 1.2 × 10-2 to 12.1 × 10-2 cm d-1 in 1992 and 1993 in the silt loam soil and by 10.2 × 10-2 cm d-1 in 1993 in the sandy loam soil as compared with NT. The dW/dt was 8.1 × 10-2 cm d-1 greater in NTR in 1992 and 1993 in the silt loam soil and was 1.9 × 10-2 greater in NTR in 1992 than in CT in the sandy loam soil. The laboratory study indicated that NT soils retained more water than the CT soils. The NTR practice maintained better soil moisture conditions for crop growth than CT in dry periods than NT in wet periods. Compared with NT, the NTR avoided prolonged near-saturated soil conditions with increased soil drying rate under extremely wet soil. Key words: Water drying, water recharge, water depletion, wet and drying periods, hydraulic properties, soil capacity to retain water


2001 ◽  
Vol 13 (1) ◽  
pp. 75-87 ◽  
Author(s):  
REJANE J. MANSUR C. NOGUEIRA ◽  
JOSÉ ANTÔNIO P. V. DE MORAES ◽  
HÉLIO ALMEIDA BURITY ◽  
EGÍDIO BEZERRA NETO

Young sexually and assexually propagated Barbados cherry plants were submitted to water deficit (20 days without irrigation). During this period the accumulation of proline, water potential of branches, osmotic potential, the relative water content of leaves, the leaf diffusive resistance, the transpiration rate and leaf temperature in the cuvette were determined. In addition, photosynthetically active radiation (PAR) and vapor pressure deficit (VPD) were measured in the porometer cuvette. The concentration of proline for both types of plants began to increase on the fifth day without watering, and reached 38.1 times the concentration in the control plants grown from seeds and 26.4 times the concentration in grafted plants on the tenth day without watering. The lowest levels of leaf water potential in the plants suffering from severe water stress varied from -4.5 to -5.7 MPa, the lowest values being observed in the sexually propagated plants. These plants also showed the highest values for transpiration (0.9 mmol.m-2.s-1) and proline concentration (20.42 mg.g-1 DM), the lowest for relative water content of the leaves (38.4%) and diffusive resistance (940 s.m-1) at the end of the experiment. The Barbados cherry plants developed strategies for surviving drought, with differences between various characteristics, resulting from prolonged stress, which significantly influenced the parameters evaluated, with the exception of leaf temperature.


1984 ◽  
Vol 11 (1) ◽  
pp. 31-35 ◽  
Author(s):  
J. M. Bennett ◽  
K. J. Boote ◽  
L. C. Hammond

Abstract Limited data exist describing the physiological responses of peanut (Arachis hypogaea L.) plants to tissue water deficits. Detailed field experiments which accurately define the water status of both the plant and soil are required to better understand the effects of water stress on a peanut crop. The objectives of the present study were 1) to describe the changes in leaf water potential components during a drying cycle, and 2) to define the relationships among soil water content, leaf water potential, leaf turgor potential, relative water content, leaf-air temperature differential, and leaf diffusive resistance as water stress was imposed on a peanut crop. During a 28-day drying period where both rainfall and irrigation were withheld from peanut plants, midday measurements of the physiological parameters and volumetric soil water contents were taken concurrently. As soil drying progressed, water extraction from the upper soil depths was limited as soil moisture approached 0.04 m3m-3. Leaf water potentials and leaf turgor potentials of nonirrigated plants decreased to approximately −2.0 and 0 MPa, respectively, by the end of the experimental period. Leaf water potentials declined only gradually as the average volumetric soil water content in the upper 90 cm of soil decreased from 0.12 to 0.04 m3m-3. Further reductions in soil water content caused large reductions in leaf water potential. As volumetric soil moisture content decreased slightly below 0.04 m3m-3 in the upper 90 cm, leaf relative water content dropped to 86%, leaf water potential approached −1.6 MPa and leaf turgor potential decreased to 0 MPa. Concurrently, stomatal closure resulted and leaf temperature increased above air temperature. Osmotic potentials measured at 100% relative water content were similar for irrigated and nonirrigated plants, suggesting little or no osmotic regulation.


Sign in / Sign up

Export Citation Format

Share Document