scholarly journals Biomass Yield and Dry Matter Partitioning in Greenhouse-grown Stinging Nettle under Different Fertilization Regimes

2012 ◽  
Vol 22 (6) ◽  
pp. 751-756 ◽  
Author(s):  
Laban K. Rutto ◽  
Myong-Sook Ansari ◽  
Michael Brandt

Stinging nettle (Urtica dioica) is a specialty crop with economic potential. Apart from being harvested and consumed as a leafy vegetable, stinging nettle has well-documented applications in alternative medicine and industry. However, research on stinging nettle mineral nutrition is insufficient and the current study is part of efforts to establish agronomic guidelines for managed cultivation. Greenhouse experiments were conducted over two seasons (summer and fall) to evaluate stinging nettle growth and dry matter partitioning in response to variations in the supply of nitrogen (N), and N in combination with potassium (K). In the first experiment, seedlings were transplanted into potted media amended with N applied at rates equivalent to 0, 15, 30, 45, 60, and 75 g·m−2, while Expt. 2 consisted of N (15, 45, and 75 g·m−2 equivalent) and K (4, 8, and 12 g·m−2 equivalent) applied in factorial combinations. In Expt. 1, stinging nettle growth was positively correlated with N supply up to 60 g·m−2 during the reproductive phase (summer) and 75 g·m−2 during the vegetative phase (fall), while there was a slight decline in growth and dry matter yield at the highest level of K (12 g·m−2) at all N levels in Expt. 2. In both experiments, growth and dry matter accumulation was higher in the fall than in summer, and high N accounted for significantly more vegetative growth with a concomitant increase in aboveground biomass. Our results suggest that K should be applied at a rate below the growth-limiting threshold of 12 g·m−2. In this study, N strongly stimulated aboveground growth suggesting it is the most important element in stinging nettle nutrition.

1991 ◽  
Vol 71 (2) ◽  
pp. 353-359 ◽  
Author(s):  
M. Tollenaar ◽  
M. Mihajlovic ◽  
A. Aguilera

Studies were conducted to investigate whether genetic improvement in dry matter accumulation of maize (Zea mays L.) hybrids recommended in Ontario from the late 1950s to the late 1980s is associated with cold-temperature tolerance during early phases of development. The maize hybrids Pride 5 (released in 1959) and Pioneer 3902 (released in 1988) were compared at 16/7, 23/14, and 33/24 °C under a 16-h photoperiod with a photosynthetic photon flux density of 650 μmol m−2 s−1 in long-term and short-term temperature experiments conducted in controlled-environment cabinets. In the long-term temperature experiment, plants were grown at the three temperature regimes from the 4- to the 12-leaf stage. Total and plant component dry matter was determined at the 8-, 10-, and 12-leaf stage, and leaf photosynthesis and chlorophyll fluorescence were measured at the 10-leaf stage. In the short-term temperature experiment, plants were exposed to the three temperature regimes during a 3-d period after the 9-leaf stage, followed by 2 d at 23/14 °C. Dry matter accumulation during the 5-d period was measured and leaf photosynthesis and chlorophyll fluorescence were measured during each of the last 3 d of the 5-d period. Results showed a highly significant temperature effect on all measured parameters. Dry matter of Pride 5 at the 10-leaf stage was higher than that of Pioneer 3902, but rates of dry matter accumulation and leaf photosynthesis did not differ among hybrids, and hybrid × temperature interactions were not significant for these parameters. Hybrid × temperature interactions were significant for dry matter partitioning and the fluorescence parameter Fv/Fm, suggesting better low-temperature tolerance for Pride 5. Results of the short-term temperature study showed a significant hybrid × temperature interaction for dry matter accumulation, with Pride 5 higher than Pioneer 3902 at the low temperature regime and Pride 5 lower than Pioneer 3902 at the high temperature regime. Results of these experiments suggest that improvement over the past 30 yr of Ontario maize hybrids is not associated with improved low-temperature tolerance during early development. Key words: Maize, low-temperature tolerance, dry matter accumulation, dry matter partitioning, photosynthesis, chlorophyll fluorescence


2004 ◽  
Vol 84 (2) ◽  
pp. 589-598 ◽  
Author(s):  
B. J. Zebarth ◽  
G. Tai ◽  
R. Tarn ◽  
H. de Jong ◽  
P. H. Milburn

One approach for reducing the contribution of potato (Solanum tuberosum L.) production to nitrate contamination of groundwater is to develop cultivars which utilize N more efficiently. In this study, variation in N use efficiency (NUE; dry matter production per unit crop N supply) characteristics of 20 commercial potato cultivars of North American and European origin were evaluated in 2 yr. Cultivars were grown with or without application of 100 kg N ha-1 as ammonium nitrate banded at planting. The recommended within-row spacing was used for each cultivar and no irrigation was applied. Plant dry matter and N accumulation were determined prior to significant leaf senescence. Crop N supply was estimated as fertilizer N applied plus soil inorganic N measured at planting plus apparent net soil N mineralization. Nitrogen use efficiency decreased curvilinearly with increasing crop N supply. Nitrogen use efficiency was lower for early-maturing cultivars compared to mid-season and late-maturing cultivars. A curvilinear relationship was obtained between plant dry matter accumulation and plant N accumulation using data for all cultivars. Deviations from this relationship were interpreted as variation in N utilization efficiency (NUtE; dry matter accumulation per unit N accumulation). Significant differences in NUtE were measured among cultivars of similar maturity. Nitrogen uptake efficiency (NUpE; plant N content per unit crop N supply) and soil nitrate concentration measured at plant harvest were uniformly low for all cultivars when crop N supply was limited, but varied among cultivars when N was more abundant. This suggests that potato cultivars vary more in terms of N uptake capacity (plant N accumulation in the presence of an abundant N supply) than in terms of NUpE. Key words: Solanum tuberosum, N mineralization, dry matter accumulation, N accumulation, N utilization efficiency


2015 ◽  
Vol 52 (2) ◽  
pp. 188-202 ◽  
Author(s):  
A. IANNUCCI ◽  
M. PIZZILLO ◽  
G. ANNICCHIARICO ◽  
M. FRAGASSO ◽  
V. FEDELE

SUMMARYDuring growth, several cereals store significant amounts of fructo-oligosaccharides (FOS), which have important prebiotic properties. Cereal forage crops are also essential components of many Mediterranean agricultural systems, although little information is available on their dynamics of accumulation and partitioning of dry matter and FOS during growth. Oat (Avena sativaL.,cv. ‘Flavia’ andcv. ‘Genziana’), emmer wheat (Triticum dicoccumSchrank,cv. ‘Giovanni Paolo’), barley (Hordeum vulgareL.,cv. ‘Diomede’) and triticale (xTriticosecaleWittmack,cv. ‘Rigel’) were investigated for their synthesis of FOS, with a view to development of management approaches for harvesting high-quality forage, and to determine whether these species can be used as natural sources of FOS for commercial use. The study was conducted at Foggia (Italy) and Bella (Potenza, Italy) over two growing seasons (2008–2009; 2009–2010). Dry-matter accumulation and FOS contents were determined for plant fractions from heading to kernel-hard stages. There were large variations across these species for dry-matter partitioning and dry-matter yield (greatest for triticale: 1.24 kg m−2), and for FOS levels of total plants and plant fractions. Emmer wheat and triticale showed greater FOS production (52.0, 41.1 g m−2, respectively). Barley, emmer wheat and triticale showed higher FOS levels in total plants (4.11%, 5.93%, 4.33% dry matter, respectively). Barley, emmer wheat and triticale appear to be the most interesting species for production of forage biomass rich in FOS and as natural FOS sources for industrial use.


1988 ◽  
Vol 36 (6) ◽  
pp. 711 ◽  
Author(s):  
KA Meney ◽  
KW Dixon

Four species of Restionaceae and Cyperaceae from the Mediterranean-type climate region of Western Australia were studied to determine factor(s) limiting their reproductive performance. Ecdeiocolea monostachya (Ecdeiocoleaceae), Lepidobolus chaetocephalus (Restionaceae), Restio aff. sphacelatus (Restionaceae) and Mesomelaena pseudostygia (Cyperaceae) differed in the pattern of dry matter partitioning and phenological patterns. All species were moderately efficient at remobilising dry matter from senescing vegetative organs, maintaining constant tissue water to dry matter content in mature organs over the study period regardless of soil moisture availability. In situ nutrient and water supplements of study species did not elicit improved seed production or significant increases in dry matter accumulation (except for current and old culms of E. monostachya and spikelets of L. chaetocephalus). For all study species except L. chaetocephalus, seed production was low, while herbivore activity, insect predation andlor infection by a smut (Tolyposporium lepidiboli) reduced seed production potential in L. chaetocephalus and E. monostachya. Attempts at seed germination for all study species were not successful. Extracted embryos from mature seed of all species cultured in vitro grew rapidly, providing a reliable method for propagation of study species.


Author(s):  
Hansa Lakhran ◽  
O. P. Sharma ◽  
Rohitash Bajiya ◽  
H. P. Verma ◽  
Meena Choudhary

A field experiment was carried out during the rabi seasons of 2016-17 and 2017-18 at Agronomy Farm, S.K.N. Agriculture University, Jobner, Jaipur, Rajasthan, to evaluate the effect of sowing at different thermal regimes and foliar sprays of bio-regulators on growth and yield of wheat. The treatments comprised three sowings (22ºC, 20ºC and 18ºC) and eight bio-regulators (control, water spray, SA @ 100 ppm, SA @ 200 ppm, TSA @ 100 ppm, TSA @ 200 ppm, TGA @ 100 ppm and TGA @ 200 ppm). The experiment was conducted in split plot design with 4 replications. Wheat sown at 20ºC showed superior performance in respect of dry-matter partitioning and yield parameters, i.e. grain, straw biological and yields as compared to sowing at 22ºC and 18ºC. Amongst the bio-regulators options, an application of SA @ 200 ppm resulted in better performance, being comparable with those of TSA @ 200 ppm and TGA @ 200 ppm. Crop sown at 20ºC along with SA @ 200 ppm was found to be a better option for maximum dry matter accumulation and productivity of wheat under heat stress.


OENO One ◽  
2005 ◽  
Vol 39 (1) ◽  
pp. 1 ◽  
Author(s):  
María Gómez-del-Campo ◽  
Pilar Baeza ◽  
C. Ruiz ◽  
José Ramón Lissarrague

<p style="text-align: justify;">Three-year-old grapevines of four cultivars (Garnacha tinta (Grenache noir), Tempranillo, Chardonnay and Airén) were grown on 35 L container under full irrigation and restricted irrigation conditions in order to determine the effect of water stress on carbohydrate allocation. Total grapevine dry matter was measured at pruning, fruitset, veraison and harvest. Roots, wood, shoots, leaves and clusters were dried separately. Shoots were the most affected organs by water stress, while wood was the least affected. Vines under water stress partitioned more dry matter to wood and roots to the detriment of fruits and shoots. The period from fruitset to veraison was the most active for dry matter accumulation under conditions of stress, whereas non-water stressed vines accumulated more dry matter from veraison to harvest. Under both irrigation treatments, fruits competed with roots for dry matter partitioning. Irrigation treatment and cultivar determined fruit size. Fruit size determined dry matter partitioning between organs and the dry matter accumulation pattern.</p>


Sign in / Sign up

Export Citation Format

Share Document