scholarly journals Weed Suppression, Nitrogen Availability, and Cabbage Production Following Sunn Hemp or Sorghum-sudangrass

2021 ◽  
pp. 1-9
Author(s):  
Thierry E. Besançon ◽  
Maggie H. Wasacz ◽  
Joseph R. Heckman

Cover crops included in a crop rotation can help increase nitrogen (N) availability to subsequent crops, raise soil organic matter, and suppress emergence and growth of various weed species. However, weed suppression by cover crops has mostly been investigated shortly after cover crop termination and not over a longer period spanning into the next cropping season. The effects of sunn hemp (Crotalaria juncea) and sorghum-sudangrass (Sorghum ×drummondi) planted the previous year on N availability before transplanting of late summer cabbage (Brassica oleracea), weed germination and growth, and cabbage yield was examined in field studies conducted in 2018 and 2019 at Pittstown, NJ. Results established that there was little evidence for a functional difference in soil N availability for fall cabbage production because of previous cover crop type. Heavy rainfall events both years may have caused major losses of available N that might otherwise be expected to come from N mineralization of residues of legume cover crop like sunn hemp. During the cover crop season, smooth pigweed (Amaranthus hybridus) and common lambsquarters (Chenopodium album) dry biomass was 77% and 82% lower, respectively, in sorghum-sudangrass compared with sunn hemp plots. The subsequent season following sorghum-sudangrass cover crop, dry biomass of broadleaf weeds was lower by 74% and 56% in June and July, respectively, compared with preceding sunn hemp. Smooth pigweed, common lambsquarters, and hairy galinsoga (Galinsoga quadriradiata) were the weed species most consistently affected by preceding sorghum-sudangrass cover crop with biomass decreased by up to 80%, 78%, and 64%, respectively. Thus, it appears that sorghum-sudangrass can provide suppression of some broadleaf species over a relatively long period and is indicative of sorghum-sudangrass allelopathic activity. On the contrary, density and biomass of grassy weeds as well as commercial yield of transplanted cabbage were unaffected by the preceding cover crop. These results suggest that sorghum-sudangrass cover crop could be integrated to transplanted cole crop rotation for providing weed suppression benefits without altering crop yield in New Jersey organic vegetable cropping systems.

Weed Science ◽  
2008 ◽  
Vol 56 (5) ◽  
pp. 753-761 ◽  
Author(s):  
Amanda S. Collins ◽  
Carlene A. Chase ◽  
William M. Stall ◽  
Chad M. Hutchinson

Additive experiments were performed to determine optimum densities for nematode-suppressive cover crops to extend the benefit from the cover crops by also using them for weed suppression. In a preliminary experiment in 2002, a range of cover-crop densities was evaluated in mixtures with smooth pigweed at 5 plants m−2. Smooth pigweed biomass accumulation was suppressed by cowpea, sunn hemp, and velvetbean at the lowest cover-crop populations (38, 44, and 15 plants m−2, respectively). Based on these results, experiments were conducted in 2003 at two locations to examine the effects of lower cover-crop densities on a higher smooth pigweed population density of 15 plants m−2. Cowpea and velvetbean densities ranged from 10 to 50 plants m−2 and sunn hemp from 20 to 100 plants m−2. In 2003, cowpea density had no effect on smooth pigweed biomass. However, smooth pigweed biomass declined linearly by 51% as sunn hemp density increased to 100 plants m−2. Similarly, as velvetbean densities increased, smooth pigweed biomass decreased showing a linear response at one location and quadratic response at the second location. Maximum suppression of smooth pigweed biomass by velvetbean occurred at the highest cover-crop density (50 plants m−2). Excellent suppression of smooth pigweed at 5 plants m−2 or fewer will result in densities of 38, 44, and 15 plants m−2 of cowpea, sunn hemp, and velvetbean. However, with smooth pigweed at 15 plants m−2, optimum cover-crop densities were not obtained because no suppression was obtained with cowpea, and the lowest weed biomass with sunn hemp and velvetbean occurred with the highest densities used. Therefore, when high smooth pigweed densities are expected, sunn hemp and velvetbean should be used at densities greater than 100 and 50 plants m−2, respectively, and further study with higher densities will be needed to define optima.


Weed Science ◽  
2021 ◽  
pp. 1-26
Author(s):  
Roberto Botelho Ferraz Branco ◽  
Fernando de Carvalho ◽  
João Paulo de Oliveira ◽  
Pedro Luis da Costa Alves

Abstract Cover crop residue left on the soil surface as organic mulch in no-tillage crop production provides several environmental benefits, including weed suppression. Thus, many farmers who use cover crops attempt to reduce the use of agricultural inputs, especially herbicides. Therefore, our objectives were to study the potential of different cover crop species to suppress weeds and produce an in situ organic mulch, and evaluate the effect of the organic mulch with and without spraying glyphosate on weed suppression for vegetable (tomato (Solanum lycopersicum L. and broccoli (Brassica oleracea L. var. botrytis) growth and yield. Five cover crop treatments (sunn hemp (Crotalaria juncea L.), jack bean [Canavalia ensiformis (L.) DC.], pearl millet [Pennisetum glaucum (L.) R. Br.], grain sorghum [Sorghum bicolor (L.) Moench ssp. bicolor] and a no-cover crop (control)) were used in the main plots; and spraying or no spraying glyphosate on the flattened cover crop in the sub plots of split-plot experimental design. Organic mulch from pearl millet, sorghum and sunn hemp resulted in lower weed biomass during the early season of both tomato and broccoli than jack bean and no-cover crop (control). Spraying glyphosate after roller crimping reduced weed biomass by 103 g m−2 and 20 g m−2 by 45 and 60 days after transplanting (DAT) of tomato, respectively and resulted in a better tomato yield compared to non spraying. Glyphosate reduced weed biomass by 110 g m−2 in the early season of broccoli (30 DAT), but did not affect yield. Terminating high biomass cover crops with a roller crimper is a promising technique for weed management in vegetable crops, which has the potential to reduce or even eliminate the need for herbicide.


Weed Science ◽  
2016 ◽  
Vol 64 (1) ◽  
pp. 80-86 ◽  
Author(s):  
Carmen K. Blubaugh ◽  
Ian Kaplan

Weeds are selected to produce overwhelming propagule pressure, and while vertebrate and invertebrate seed predators destroy a large percentage of seeds, their ecosystem services may not be sufficient to overcome germination site limitations. Cover crops are suggested to facilitate seed predation, but it is difficult to disentangle reductions in weed recruitment attributable to granivores from those due to plant competition. Using common lambsquarters as a focal weed species, we used experimental seed subsidies and differential seed predator exclusion to evaluate the utility of vertebrate and invertebrate seed predators in fallow, killed cover crop, and living mulch systems. Over two growing seasons, we found that seed predators were responsible for a 38% reduction in seedling emergence and 81% reduction in weed biomass in fallow plots following simulated seed rain, suggesting that granivory indeed overcomes safe-site limitation and suppresses weeds. However, the common lambsquarters densities in ambient seedbanks across fallow and cover crop treatments were high, and seed predators did not impact their abundance. Across the study, we found either neutral or negative effects of vertebrate seed predators on seed predation, suggesting that invertebrate seed predators contribute most to common lamnsquarters regulation in our system. These results imply that weed seed biocontrol by invertebrates can reduce propagule pressure initially following senescence, but other tools must be leveraged for long-term seedbank management.


HortScience ◽  
2007 ◽  
Vol 42 (2) ◽  
pp. 289-293 ◽  
Author(s):  
Michael J. Adler ◽  
Carlene A. Chase

The phytotoxicity of aqueous foliar extracts and ground dried residues of sunn hemp (Crotalaria juncea L.), cowpea [Vigna unguiculata (L.) Walp. cv. Iron Clay], and velvetbean [Mucuna deeringiana (Bort) Merr.] to crop and weed germination and growth was evaluated to compare the allelopathic potential of the cover crops. By 14 days after treatment (DAT), goosegrass [Eleusine indica (L.) Gaertn.] germination with 5% aqueous extracts of all cover crops (w/v fresh weight basis) was similar and greater than 75% of control. However, with the 10% extracts, goosegrass germination was lowest with cowpea extract, intermediate with velvetbean extract, and highest with sunn hemp extract. Livid amaranth (Amaranthus lividus L.) germination declined to ≈50% with cowpea and sunn hemp extracts and even lower to 22% with velvetbean extract. The suppression of livid amaranth germination was greater with the 10% extracts than the 5% extracts. Bell pepper (Capsicum annuum L.) germination was unaffected by velvetbean extract, inhibited more by the 5% cowpea extract than the 10% extract, and was also sensitive to the 10% sunn hemp extract. All cover crop extracts resulted in an initial delay in tomato (Lycopersicon esculentum Mill.) germination, but by 14 DAT, inhibition of germination was apparent only with cowpea extract. The phytotoxicity of ground dried residues of the three cover crops on germination, plant height, and dry weight of goosegrass, smooth amaranth (A. hybridus L.), bell pepper, and tomato was evaluated in greenhouse studies. Goosegrass germination was inhibited in a similar manner by residues of the three cover crops to 80% or less of control. Smooth amaranth germination, plant height, and dry biomass were more sensitive to sunn hemp residues than to cowpea and velvetbean residues. Bell pepper germination, plant height, and dry weight were greater than 90% of control except for dry weight with cowpea residue, which was only 78% of control. The greatest effect of cover crop residue on tomato occurred with dry weight, because dry weights with cowpea and sunn hemp were only 76% and 69% of control, respectively, and lower than with velvetbean. There was more evidence of cover crop phytotoxicity with the weed species than with the crop species and cowpea extracts and residue affected all species more consistently than those of sunn hemp and velvetbean.


HortScience ◽  
2005 ◽  
Vol 40 (7) ◽  
pp. 2125-2131 ◽  
Author(s):  
Qingren Wang ◽  
Waldemar Klassen ◽  
Yuncong Li ◽  
Merlyn Codallo ◽  
Aref A. Abdul-Baki

Intensive rainfall during summer causes substantial nutrient leaching in a subtropical region, where most vegetable lands lay fallow during this period. Also, an excessive amount of irrigation water supplied during the winter vegetable growing season leads to soil nutrient loss, which greatly impacts vegetable yields, especially in soils that possess a low capacity to retain soil water and nutrients. A 2-year field experiment was carried out to evaluate the effects of various summer cover crops and irrigation rates on tomato yields and quality, and on soil fertility in a subtropical region of Florida. The cover crops were sunn hemp [Crotalaria juncea (L.) `Tropic Sun'], cowpea [Vigna unguiculata (L.) Walp, `Iron Clay'], velvetbean [Mucuna deeringiana (Bort.) Merr.], and sorghum sudangrass [Sorghum bicolor × S. bicolor var. sudanense (Piper) Stapf.], with a weed-free fallow as a control. The cover crops were planted during late Spring 2001 and 2002, incorporated into the soil in the fall, and tomatoes [Lycopersicon esculentum (Mill.) `Sanibel'] were grown on raised beds during Winter 2001–02 and 2002–03, respectively. Irrigation in various treatments was controlled when tensiometer readings reached –5, –10, –20, or –30 kPa. The cover crops produced from 5.2 to 12.5 Mg·ha–1 of above ground dry biomass and 48 to 356 Mg·ha–1 of N during 2001–02 and from 3.6 to 9.7 Mg·ha–1 of dry biomass and 35 to 277 kg·ha–1 of N during 2002–03. The highest N contribution was made by sunn hemp and the lowest by sorghum sudangrass. Based on 2-year data, tomato marketable yields were increased from 14% to 27% (p ≤ 0.05) by growing cover crops, and the greatest increase occurred in the sunn hemp treatment followed by the cowpea treatment. Irrigation at –10, –20, and –30 kPa significantly improved marketable yields by 14%, 12%, and 25% (p ≤ 0.05) for 2001–02, and 18%, 31%, and 34% (p ≤ 0.05) for 2002–03, respectively, compared to yields at the commonly applied rate, –5 kPa (control). Irrigation at –30 kPa used about 85% less water than at –5 kPa. Yields of extra-large fruit in the sunn hemp and cowpea treatments from the first harvest in both years averaged 12.6 to 15.2 Mg·ha–1, and they were significantly higher than yields in the fallow treatment (10.2 to 11.3 Mg·ha–1). Likewise at –30 kPa yields of extra-large fruit from the first harvest for both years were 13.0 to 15.3 Mg·ha–1 compared to 9.8 to 10.7 Mg·ha–1 at –5 kPa. Soil NO3-N and total N contents in sunn hemp and cowpea treatments were significantly higher than those in fallow. The results indicate that growing legume summer cover crops in a subtropical region, especially sunn hemp and cowpea, and reducing irrigation rates are valuable approaches to conserve soil nutrients and water, and to improve soil fertility and tomato yields and quality.


2012 ◽  
Vol 26 (4) ◽  
pp. 818-825 ◽  
Author(s):  
Zachary D. Hayden ◽  
Daniel C. Brainard ◽  
Ben Henshaw ◽  
Mathieu Ngouajio

Winter annual weeds can interfere directly with crops and serve as alternative hosts for important pests, particularly in reduced tillage systems. Field experiments were conducted on loamy sand soils at two sites in Holt, MI, between 2008 and 2011 to evaluate the relative effects of cereal rye, hairy vetch, and rye–vetch mixture cover crops on the biomass and density of winter annual weed communities. All cover crop treatments significantly reduced total weed biomass compared with a no-cover-crop control, with suppression ranging from 71 to 91% for vetch to 95 to 98% for rye. In all trials, the density of nonmustard family broadleaf weeds was either not suppressed or suppressed equally by all cover crop treatments. In contrast, the density of mustard family weed species was suppressed more by rye and rye–vetch mixtures than by vetch. Cover crops were more consistently suppressive of weed dry weight per plant than of weed density, with rye-containing cover crops generally more suppressive than vetch. Overall, rye was most effective at suppressing winter annual weeds; however, rye–vetch mixtures can match the level of control achieved by rye, in addition to providing a potential source of fixed nitrogen for subsequent cash crops.


Weed Science ◽  
2015 ◽  
Vol 63 (1) ◽  
pp. 282-295 ◽  
Author(s):  
Richard G. Smith ◽  
Lesley W. Atwood ◽  
Fredric W. Pollnac ◽  
Nicholas D. Warren

Cover crops represent a potentially important biological filter during weed community assembly in agroecosystems. This filtering could be considered directional if different cover-crop species result in weed communities with predictably different species composition. We examined the following four questions related to the potential filtering effects of cover crops in a field experiment involving five cover crops grown in monoculture and mixture: (1) Do cover crops differ in their effect on weed community composition? (2) Is competition more intense between cover crops and weeds that are in the same family or functional group? (3) Is competition more intense across weed functional types in a cover-crop mixture compared with cover crops grown in monocultures? (4) Within a cover-crop mixture, is a higher seeding rate associated with more effective biotic filtering of the weed community? We found some evidence that cover crops differentially filtered weed communities and that at least some of these filtering effects were due to differential biomass production across cover-crop species. Monocultures of buckwheat and sorghum–sudangrass reduced the number of weed species relative to the no-cover-crop control by an average of 36 and 59% (buckwheat) and 25 and 40% (sorghum–sudangrass) in 2011 and 2012, respectively. We found little evidence that competition intensity was dependent upon the family or functional classification of the cover crop or weeds, or that cover-crop mixtures were stronger assembly filters than the most effective monocultures. Although our results do not suggest that annual cover crops exert strong directional filtering during weed community assembly, our methodological framework for detecting such effects could be applied to similar future studies that incorporate a greater number of cover-crop species and are conducted under a greater range of cover-cropping conditions.


2016 ◽  
Vol 26 (4) ◽  
pp. 409-416 ◽  
Author(s):  
Raymond Kruse ◽  
Ajay Nair

Cover crops can be used as a sustainable weed management tool in crop production systems. Cover crops have the ability to suppress weeds, reduce soil erosion, increase soil organic matter, and improve soil physical, chemical, and biological properties. In the north-central region of the United States, including Iowa, much cover crop research has been conducted in row crop systems, mainly with corn (Zea mays) and soybean (Glycine max) where cover crops are planted at the end of the growing season in September or October. There is little information available on the use of cover crops in vegetable cropping systems, particularly on the use of summer cover crops for fall vegetable production. The choice of the cover crop will significantly impact the entire fall vegetable production enterprise. Vegetable growers need information to identify the right cover crop for a particular slot in the cropping system and to understand how cover crops would affect weed suppression, soil properties, and successive vegetable crop yield. The time interval between cover crop termination and vegetable planting critically affects the growth and successive yield of the vegetable crop. This study investigated how short-duration summer cover crops impact weed suppression, soil properties, and ‘Adriana’ lettuce (Lactuca sativa) yield. The study also examined appropriate planting times of lettuce transplants after soil incorporation of cover crops. The experimental design was a randomized complete block split-plot design with four replications. Whole plots consisted of cover crop treatments: ‘Mancan’ buckwheat (Fagopyrum esculentum), ‘Iron & Clay’ cowpea/southernpea (Vigna unguiculata), black oats (Avena strigosa), ‘Grazex II’ sorghum-sudangrass (Sorghum bicolor ssp. drummondii), and a control (no-cover crop) where weeds were left to grow unchecked. The subplot treatment consisted of two lettuce transplanting times: planted immediately or 8 days after cover crop soil incorporation. Fall-planted butterhead lettuce was used. Data were collected on cover crop biomass, weed biomass, soil nutrient concentration, lettuce growth, and yield. All cover crops significantly reduced weed biomass during the fallow period as compared with the control treatment. Highest degree of weed suppression (90% as compared with the no-cover crop control treatment) was provided by buckwheat. Southernpea, a legume, increased soil nitrogen (N) concentration and contributed to higher lettuce yield and improved quality. Southernpea also enhanced lettuce growth and led to an earlier harvest than other treatments. Sorghum-sudangrass showed evidence of detrimental effects to the marketable lettuce crop. This was not due to N immobilization but presumably due to alleopathic properties. There is no clear pattern within any cover crop treatment that lettuce planting time following cover crop termination affects plant growth; however, planting early or soon after cover crop incorporation ensures more growing degree days and daylight, thus leading to timely harvest of a higher quality product. This study demonstrates that cover crops can successfully be integrated into vegetable cropping systems; however, cover crop selection is critical.


2006 ◽  
Vol 16 (2) ◽  
pp. 328-338 ◽  
Author(s):  
Qingren Wang ◽  
Yuncong Li ◽  
Waldemar Klassen

A pot experiment with summer cover crops and soil amendments was conducted in two consecutive years to elucidate the effects of these cover crops and soil amendments on `Clemson Spineless 80' okra (Abelmoschus esculentus) yields and biomass production, and the uptake and distribution of soil nutrients and trace elements. The cover crops were sunn hemp (Crotalaria juncea), cowpea (Vigna unguiculata), velvetbean (Mucuna deeringiana), and sorghum sudangrass (Sorghum bicolor × S. bicolor var. sudanense) with fallow as the control. The organic soil amendments were biosolids (sediment from wastewater plants), N-Viro Soil (a mixture of biosolids and coal ash, coal ash (a combustion by-product from power plants), co-compost (a mixture of 3 biosolids: 7 yard waste), and yard waste compost (mainly from leaves and branches of trees and shrubs, and grass clippings) with a soil-incorporated cover crop as the control. As a subsequent vegetable crop, okra was grown after the cover crops, alone or together with the organic soil amendments, had been incorporated. All of the cover crops, except sorghum sudangrass in 2002-03, significantly improved okra fruit yields and the total biomass production (i.e., fruit yields were enhanced by 53% to 62% in 2002-03 and by 28% to 70% in 2003-04). Soil amendments enhanced okra fruit yields from 38.3 to 81.0 g/pot vs. 27.4 g/pot in the control in 2002-03, and from 59.9 to 124.3 g/pot vs. 52.3 g/pot in the control in 2003-04. Both cover crops and soil amendments can substantially improve nutrient uptake and distribution. Among cover crop treatments, sunn hemp showed promising improvement in concentrations of calcium (Ca), zinc (Zn), copper (Cu), iron (Fe), boron (B), and molybdenum (Mo) in fruit; magnesium (Mg), Zn, Cu, and Mo in shoots; and Mo in roots of okra. Among soil amendments, biosolids had a significant influence on most nutrients by increasing the concentrations of Zn, Cu, Fe, and Mo in the fruit; Mg, Zn, Cu, and Mo in the shoot; and Mg, Zn, and Mo in the root. Concentrations of the trace metal cadmium (Cd) were not increased significantly in either okra fruit, shoot, or root by application of these cover crops or soil amendments, but the lead (Pb) concentration was increased in the fruit by application of a high rate (205 g/pot) of biosolids. These results suggest that cover crops and appropriate amounts of soil amendments can be used to improve soil fertility and okra yield without adverse environmental effects or risk of contamination of the fruit. Further field studies will be required to confirm these findings.


1996 ◽  
Vol 10 (4) ◽  
pp. 893-899 ◽  
Author(s):  
Nilda R. Burgos ◽  
Ronald E. Talbert

Studies were conducted at the Vegetable Substation in Kibler, AR, in 1992 and 1993, in the same plots, to evaluate weed suppression by spring-seeded cover crops and to determine the effects of cover crop and imazethapyr on no-till southern pea. A plot without cover, conventionally tilled before planting southern pea, served as control. Weed control treatments, applied as subplots in each cover crop, included a weedy check, handweeded check, and half and full rates of imazethapyr (0.035 and 0.07 kg/ha) followed by sethoxydim (0.22 kg/ha). Biomass of Palmer amaranth 6 WAR without herbicides, was less in Italian ryegrass and sorghum-sudangrass residues than in oat residue and no cover crop. Over the years, Palmer amaranth density increased 333% without cover crops and 28% with cover crops. Rice flatsedge density increased four to five times in oat and sorghum-sudangrass residues but remained the same in Italian ryegrass residue. In general, Italian ryegrass residue suppressed the most weeds. Oat residue was least suppressive. Italian ryegrass and sorghum-sudangrass also reduced southern pea stand. Regardless of cover crop and year, half and full rates of imazethapyr followed by sethoxydim equally reduced density of Palmer amaranth, goosegrass, large crabgrass, southwestern cupgrass, and rice flatsedge compared with the untreated check. Residual control of Palmer amaranth by imazethapyr was higher at the full rate than the reduced rate, regardless of cover crop. Half rate of imazethapyr followed by sethoxydim controlled 94 to 100% of Palmer amaranth, rice flatsedge, large crabgrass, and southwestern cupgrass late in the season, regardless of cover crop in 1992 and 1993. Southern pea yield in untilled plots with cover crops was two to three times lower than yield in plots with preplant tillage and no cover crops mostly because of reduction in crop stand in the presence of cover crops.


Sign in / Sign up

Export Citation Format

Share Document