scholarly journals Partial Resistance to Bacterial Wilt in Transgenic Tomato Plants Expressing Antibacterial Lactoferrin Gene

2002 ◽  
Vol 127 (2) ◽  
pp. 158-164 ◽  
Author(s):  
Tae-Jin Lee ◽  
Dermot P. Coyne ◽  
Thomas E. Clemente ◽  
Amitava Mitra

Expression of lactoferrin (LF) gene, a cationic iron-binding glycoprotein, was investigated in transgenic tomato plants (Lycopersicon esculentum Mill.). Resistance of the transgenic tomato plants to the pathogen (Ralstonia solanacearum Smith) causing bacterial wilt was also determined. Tomato line F7926-96, susceptible to bacterial wilt, was transformed with Agrobacterium strain C58C1 containing a plasmid construction carrying a modified LF cDNA. The introgression of LF cDNA into the susceptible tomato line was confirmed by Southern blot and the expression of full-length lactoferrin transcript and protein was also detected by northern and western blots, respectively. Based on resistance to kanamycin, a Mendelian segregation for a single locus insertion was observed in the T1 and T2 generations and all T1 and T2 plants resistant to kanamycin showed the single corresponding band of LF cDNA in Southern blot analysis. Two transgenic tomato lines inoculated with 1 × 107 and 1 × 108 colony-forming units (CFU)/mL with Rs isolate NC251 (K60, race 1) exhibited early resistance and subsequent susceptibility, while 44% to 55% of plants survived until maturity (fruit ripening) when inoculated with 1 × 105 CFU/mL in comparison with the fully susceptible tomato line. The latter resistance to bacterial wilt in transgenic tomatoes with the stable Mendelian segregation patterns for the LF gene suggests a potential new approach to consider for control of bacterial wilt of tomato. The possible value of this gene along with other plant genes to control bacterial pathogens is discussed.

2014 ◽  
Vol 40 (1) ◽  
pp. 14-17 ◽  
Author(s):  
Ye. N. Baranova ◽  
E. N. Akanov ◽  
A. A. Gulevich ◽  
L. V. Kurenina ◽  
S. A. Danilova ◽  
...  

1989 ◽  
Vol 218 (1) ◽  
pp. 25-32 ◽  
Author(s):  
Michael W. Lassner ◽  
Joseph M. Palys ◽  
John I. Yoder

2019 ◽  
Vol 135 ◽  
pp. 77-86 ◽  
Author(s):  
Mourad Baghour ◽  
Francisco Javier Gálvez ◽  
M. Elena Sánchez ◽  
M. Nieves Aranda ◽  
Kees Venema ◽  
...  

1991 ◽  
Vol 3 (11) ◽  
pp. 1187 ◽  
Author(s):  
Harry J. Klee ◽  
Maria B. Hayford ◽  
Keith A. Kretzmer ◽  
Gerard F. Barry ◽  
Ganesh M. Kishore

2009 ◽  
Vol 35 (4) ◽  
pp. 223-226 ◽  
Author(s):  
E. K. Serenko ◽  
V. N. Ovchinnikova ◽  
L. V. Kurenina ◽  
E. N. Baranova ◽  
A. A. Gulevich ◽  
...  

1992 ◽  
Vol 20 (1) ◽  
pp. 61-70 ◽  
Author(s):  
Caius M. T. Rommens ◽  
George N. Rudenko ◽  
Paul P. Dijkwel ◽  
Mark J. J. van Haaren ◽  
Pieter B. F. Ouwerkerk ◽  
...  

2007 ◽  
Vol 68 (11) ◽  
pp. 1497-1509 ◽  
Author(s):  
David J. Millar ◽  
Marianne Long ◽  
Georgina Donovan ◽  
Paul D. Fraser ◽  
Alain-Michel Boudet ◽  
...  

Cells ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 822 ◽  
Author(s):  
Yu-Hui Hong ◽  
Jun Meng ◽  
Xiao-Li He ◽  
Yuan-Yuan Zhang ◽  
Yu-Shi Luan

Tomato is the highest-value fruit/vegetable crop worldwide. However, the quality and yield of tomatoes are severely affected by late blight. MicroRNA482s (miR482s) are involved in the plant’s immune system. In this study, miR482c was transiently and stably overexpressed in tomatoes in transgenic plants to explore its mechanism in tomato resistance against late blight. Transgenic tomato plants with transiently overexpressed miR482c displayed a larger lesion area than the control plants upon infection. Furthermore, compared with wild-type (WT) tomato plants, the transgenic tomato plants stably overexpressing miR482c displayed a decreased expression of target genes accompanied by lower peroxidase (POD), superoxide dismutase (SOD), and phenylalanine ammonia-lyase (PAL) activity activities and higher malondialdehyde (MDA) content, thereby leading to a decline in reactive oxygen species (ROS) scavenging ability and aggravating the damage of lipid peroxidation product accumulation on the cell membrane, eventually enhancing plant susceptibility. This finding indicates that miR482c may act as a negative regulator in tomato resistance by regulating nucleotide binding sites and leucine-rich repeat (NBS-LRR) expression levels and ROS levels.


PLoS ONE ◽  
2019 ◽  
Vol 14 (11) ◽  
pp. e0225090 ◽  
Author(s):  
Xinyong Guo ◽  
Li Zhang ◽  
Xiaozhen Wang ◽  
Minhuan Zhang ◽  
Yuxin Xi ◽  
...  

2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Xin Liu ◽  
Chunchang Tan ◽  
Xin Cheng ◽  
Xiaoming Zhao ◽  
Tianlai Li ◽  
...  

Abstract Background Potassium (K+) is an essential ion for most plants, as it is involved in the regulation of growth and development. K+ homeostasis in plant cells has evolved to facilitate plant adaptation to K+-deficiency stress. Argonaute1 (AGO1) is regulated by miR168 to modulate the small RNA regulatory pathway by RNA silencing complex (RISC) in tomatoes. However, the role of miR168-mediated regulation of AGO1 in the context of K+ deficiency stress in tomatoes has not been elucidated yet. Results SlmiR168 and its target gene SlAGO1A were differentially expressed among low-K+-tolerant JZ34 and low-K+-sensitive JZ18 tomato plants. Transgenic tomato plants constitutively expressing pri-SlmiR168a showed stronger root system growth, better leaves development, and higher K+ contents in roots under K+-deficiency stress than those of the transgenic tomato lines expressing rSlAGO1A (SlmiR168-resistant) and the wild type (WT). Deep sequencing analysis showed that 62 known microRNAs (miRNAs) were up-regulated in 35S:rSlAGO1 compared with WT tomatoes. The same miRNAs were down-regulated in 35S:SlmiR168a compared with WT plants. The integrated analysis found 12 miRNA/mRNA pairs from the 62 miRNAs, including the root growth and cytokinin (CTK)/abscisic acid (ABA) pathways. Conclusions The regulation mediated by SlmiR168 of SlAGO1A contributes to the plant development under low-K+ stress. Moreover, this regulation mechanism may influence downstream miRNA pathways in response to low-K+ stress through the CTK/ABA and root growth modulation pathways.


Sign in / Sign up

Export Citation Format

Share Document