scholarly journals NUMERICAL SIMULATIONS OF ADDED RESISTANCE IN REGULAR HEAD WAVES ON A CONTAINER SHIP

Brodogradnja ◽  
2019 ◽  
Vol 70 (2) ◽  
pp. 61-86 ◽  
Author(s):  
Young-Gill Lee ◽  
◽  
Cheolho Kim ◽  
Jeong-Ho Park ◽  
Hyeongjun Kim ◽  
...  
2020 ◽  
Vol 16 (31) ◽  
pp. 41-52
Author(s):  
Amirhossein Amiri ◽  
Mohsen Shakeri ◽  
Abas Ramiar ◽  
Mostafa Jafarzadeh Khatibani ◽  
◽  
...  

2020 ◽  
Vol 211 ◽  
pp. 107594
Author(s):  
Emil Shivachev ◽  
Mahdi Khorasanchi ◽  
Sandy Day ◽  
Osman Turan

Author(s):  
Cheol-Min Lee ◽  
Sung-Chul Park ◽  
Jin-Won Yu ◽  
Jung-Eun Choi ◽  
Inwon Lee

2021 ◽  
Vol 9 (5) ◽  
pp. 504
Author(s):  
Deniz Ozturk ◽  
Cihad Delen ◽  
Simone Mancini ◽  
Mehmet Ozan Serifoglu ◽  
Turgay Hizarci

This study presents the full-scale resistance and seakeeping performance of an awarded Double-M craft designed as a 15 m next-generation Emergency Response and Rescue Vessel (ERRV). For this purpose, the Double-M craft is designed by comprising the benchmark Delft 372 catamaran with an additional center and two side hulls. First, the resistance and seakeeping analyses of Delft 372 catamaran are simulated on the model scale to verify and compare the numerical setup for Fr = 0.7. Second, the seakeeping performance of the full-scale Double-M craft is examined at Fr = 0.7 in regular head waves (λ/L = 1 to 2.5) for added resistance and 2-DOF motion responses. The turbulent flow is simulated by the unsteady RANS method with the Realizable Two-Layer k-ε scheme. The calm water is represented by the flat VOF (Volume of Fluid) wave, while the incident long waves are represented by the fifth-order Stokes wave. The residual resistance of the Double-M craft is improved by 2.45% compared to that of the Delft 372 catamaran. In the case of maximum improvement (at λ/L = 1.50), the relative added resistance of the Double-M craft is 10.34% lower than the Delft 372 catamaran; moreover, the heave and pitch motion responses were 72.5% and 35.5% less, respectively.


2014 ◽  
Vol 66 (2) ◽  
Author(s):  
S. Ikezoe ◽  
N. Hirata ◽  
H. Yasukawa

To capture the seakeeping performance of a catamaran with asymmetric demi-hulls, tank tests were carried out in regular head waves using a scaled model with 2.036 m in length. The lateral space between the demi-hulls was changed in the tests as W/B=2.55, 2.90 and 3.25, where W denotes breadth overall and B the breadth of the demi-hull. Also, two models with different water lines of inside flat and outside round (IF-type) and of outside flat and inside round (OF-type) were used. OF-type is superior to IF-type in both ship motion and added resistance performances in waves at the design speed. In IF-type series, the smallest clearance, W/B=2.55 is the best in the added resistance performance.


2020 ◽  
Vol 8 (9) ◽  
pp. 696
Author(s):  
Ivana Martić ◽  
Nastia Degiuli ◽  
Andrea Farkas ◽  
Ivan Gospić

Added resistance in waves is one of the main causes of an increase in required power when a ship operates in actual service conditions. The assessment of added resistance in waves is important from both an economic and environmental point of view, owing to increasingly stringent rules set by the International Maritime Organization (IMO) with the aim to reduce CO2 emission by ships. For that reason, it is desirable to evaluate the added resistance in waves already in the preliminary ship design stage both in regular and irregular waves. Ships are traditionally designed and optimized with respect to calm water conditions. Within this research, the effect of prismatic coefficient, longitudinal position of the centre of buoyancy, trim, pitch radius of gyration, and ship speed on added resistance is investigated for the KCS (Kriso Container Ship) container ship in regular head waves and for different sea states. The calculations are performed using the 3D panel method based on Kelvin type Green function. The results for short waves are corrected to adequately take into account the diffraction component. The obtained results provide an insight into the effect of variation of ship characteristics on added resistance in waves.


Sign in / Sign up

Export Citation Format

Share Document