scholarly journals Prediction for Irregular Ocean Wave and Floating Body Motion by Regularization: Part 2. Motion Prediction

2017 ◽  
Vol 41 (1) ◽  
pp. 37-53
Author(s):  
Young Jun Yang ◽  
Sun Hong Kwon
1979 ◽  
Vol 23 (01) ◽  
pp. 20-31
Author(s):  
R. B. Chapman

A numerical method is presented for solving the transient two-dimensional flow induced by the motion of a floating body. The free-surface equations are linearized, but an exact body boundary condition permits large-amplitude motion of the body. The flow is divided into two parts: the wave field and the impulsive flow required to satisfy the instantaneous body boundary condition. The wave field is represented by a finite sum of harmonics. A nonuniform spacing of the harmonic components gives an efficient representation over specified time and space intervals. The body is represented by a source distribution over the portion of its surface under the static waterline. Two modes of body motion are discussed—a captive mode and a free mode. In the former case, the body motion is specified, and in the latter, it is calculated from the initial conditions and the inertial properties of the body. Two examples are given—water entry of a wedge in the captive mode and motion of a perturbed floating body in the free mode.


Robotics ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 33
Author(s):  
Elisa Digo ◽  
Mattia Antonelli ◽  
Valerio Cornagliotto ◽  
Stefano Pastorelli ◽  
Laura Gastaldi

(1) Background: The technologies of Industry 4.0 are increasingly promoting an operation of human motion prediction for improvement of the collaboration between workers and robots. The purposes of this study were to fuse the spatial and inertial data of human upper limbs for typical industrial pick and place movements and to analyze the collected features from the future perspective of collaborative robotic applications and human motion prediction algorithms. (2) Methods: Inertial Measurement Units and a stereophotogrammetric system were adopted to track the upper body motion of 10 healthy young subjects performing pick and place operations at three different heights. From the obtained database, 10 features were selected and used to distinguish among pick and place gestures at different heights. Classification performances were evaluated by estimating confusion matrices and F1-scores. (3) Results: Values on matrices diagonals were definitely greater than those in other positions. Furthermore, F1-scores were very high in most cases. (4) Conclusions: Upper arm longitudinal acceleration and markers coordinates of wrists and elbows could be considered representative features of pick and place gestures at different heights, and they are consequently suitable for the definition of a human motion prediction algorithm to be adopted in effective collaborative robotics industrial applications.


2000 ◽  
Vol 417 ◽  
pp. 157-181 ◽  
Author(s):  
A. A. KOROBKIN ◽  
D. H. PEREGRINE

The initial stage of the water flow caused by an impact on a floating body is considered. The vertical velocity of the body is prescribed and kept constant after a short acceleration stage. The present study demonstrates that impact on a floating and non-flared body gives acoustic effects that are localized in time behind the front of the compression wave generated at the moment of impact and are of major significance for explaining the energy distribution throughout the water, but their contribution to the flow pattern near the body decays with time. We analyse the dependence on the body acceleration of both the water flow and the energy distribution – temporal and spatial. Calculations are performed for a half-submerged sphere within the framework of the acoustic approximation. It is shown that the pressure impulse and the total impulse of the flow are independent of the history of the body motion and are readily found from pressure-impulse theory. On the other hand, the work done to oppose the pressure force, the internal energy of the water and its kinetic energy are essentially dependent on details of the body motion during the acceleration stage. The main parameter is the ratio of the time scale for the acoustic effects and the duration of the acceleration stage. When this parameter is small the work done to accelerate the body is minimal and is spent mostly on the kinetic energy of the flow. When the sphere is impulsively started to a constant velocity (the parameter is infinitely large), the work takes its maximum value: Longhorn (1952) discovered that half of this work goes to the kinetic energy of the flow near the body and the other half is taken away with the compression wave. However, the work required to accelerate the body decreases rapidly as the duration of the acceleration stage increases. The optimal acceleration of the sphere, which minimizes the acoustic energy, is determined for a given duration of the acceleration stage. Roughly speaking, the optimal acceleration is a combination of both sudden changes of the sphere velocity and uniform acceleration.If only the initial velocity of the body is prescribed and it then moves freely under the influence of the pressure, the fraction of the energy lost in acoustic waves depends only on the ratio of the body's mass to the mass of water displaced by the hemisphere.


2020 ◽  
Vol 22 (5) ◽  
pp. 1161-1181
Author(s):  
Elisabetta Persi ◽  
Gabriella Petaccia ◽  
Stefano Sibilla ◽  
Pilar Brufau ◽  
José Ignacio García-Palacin

Abstract Numerical models trying to faithfully represent the movement of floating bodies transport in open-channel flow require experimental data for validation. In order to provide an adequate dataset, flume experiments were carried out to analyse the transport of singular and grouped rigid bodies floating on the water surface. Both cylindrical and spherical samples were employed: they were released in a rectangular channel under steady conditions in one-dimensional (plain channel) and two-dimensional (2D) configurations using one rectangular side obstacle, one smooth side obstacle or two rectangular alternate obstacles. The outcomes of the experiments are the planar displacement and the rotation of the samples, which are related to the flow field in the different configurations. The detailed experimental analysis of the floating body motion provides information for the calibration of numerical models simulating floating bodies transport. This dataset is thus employed for the validation of the Eulerian–Lagrangian model ORSA2D_WT, highlighting its strengths and improvable aspects. Similar applications could be carried out with any 2D model which performs the simulation of discrete elements moving on the water surface.


Author(s):  
Haoran Li ◽  
Erin E. Bachynski

Abstract A fully nonlinear Navier-Stokes/VOF numerical wave tank, developed within the open-source CFD toolbox OpenFOAM, is used to investigate the response of a moored 2D floating body to nonlinear wave loads. The waveDyMFoam solver, developed by extending the interDyMFoam solver of the OpenFOAM library with the waves2Foam package, is applied. Furthermore, a simple linear spring is implemented to constrain the body motion. An efficient domain decomposition strategy is applied to reduce the computational time of irregular wave cases. The numerical results are compared against the results from potential flow theory. Numerical results highlight the coupling between surge and pitch motion and the presence of nonlinear loads and responses. Some minor numerical disturbance occurs when the maximum body motion response is achieved.


Sign in / Sign up

Export Citation Format

Share Document