scholarly journals Simulation of a sucker rod pump for oil production

Author(s):  
D. S. Torgaeva ◽  
◽  
M. P. Sukhorukov ◽  
Yu. A. Shurygin ◽  
Yu. A. Shinyakov ◽  
...  
Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 83
Author(s):  
Oleg Bazaluk ◽  
Olha Dubei ◽  
Liubomyr Ropyak ◽  
Maksym Shovkoplias ◽  
Tetiana Pryhorovska ◽  
...  

During oil fields operation, gas is extracted along with oil. In this article it is suggested to use jet pumps for utilization of the associated oil gas, burning of which causes environmental degradation and poses a potential threat to the human body. In order to determine the possibility of simultaneous application of a sucker-rod pump, which is driven by a rocking machine, and a jet pump (ejector) in the oil well, it is necessary to estimate the distribution of pressure along the borehole from the bottomhole to the mouth for two cases: when the well is operated only be the sucker-rod pump and while additional installation of the oil-gas jet pump above its dynamic level. For this purpose, commonly known methods of Poettman-Carpenter and Baksendel were used. In addition, the equations of high-pressure and low-pressure oil-gas jet pumps were obtained for the case, when the working stream of the jet pump is a gas-oil production mixture and the injected stream is a gas from the annulus of the well. The values which are included in the resulting equations are interrelated and can only be found in a certain sequence. Therefore, a special methodology has been developed for the practical usage of these equations in order to calculate the working parameters of a jet pump based on the given independent working parameters of the oil well. Using this methodology, which was implemented in computer programs, many operating parameters were calculated both for the well and for the jet pump itself (pressures, densities of working, injected and mixed flows, flow velocities and other parameters in control sections). According to the results of calculations, graphs were built that indicate a number of regularities during the oil well operation with such a jet pump. The main result of the performed research is a recommendation list on the choice of the oil-gas jet pump location inside the selected oil well and generalization of the principles for choosing the perfect location of such ejectors for other wells. The novelty of the proposed study lays in a systematic approach to rod pump and our patented ejector pump operation in the oil and chrome plating of pump parts. The result of scientific research is a sound method of determining the rational location of the ejector in the oil well and the calculation of its geometry, which will provide a complete selection of petroleum gas released into the annulus of the oil well. To ensure reliable operation of jet and plunger pumps in oil wells, it is proposed to use reinforcement of parts (bushings, plungers, rods, etc.) by electrochemical chromium plating in a flowing electrolyte. This has significantly increased the wear resistance and corrosion resistance of the operational surfaces of these parts and, accordingly, the service life of the pumps. Such measures will contribute to oil production intensification from wells and improve the environmental condition of oil fields.


2011 ◽  
Vol 3 (5) ◽  
pp. 274-276
Author(s):  
Siraj Bhatkar ◽  
◽  
Yusufuddin Nehri ◽  
Fahad Shaikh
Keyword(s):  

Author(s):  
Sherif Fakher ◽  
Abdelaziz Khlaifat ◽  
M. Enamul Hossain ◽  
Hashim Nameer

AbstractIn many oil reservoirs worldwide, the downhole pressure does not have the ability to lift the produced fluids to the surface. In order to produce these fluids, pumps are used to artificially lift the fluids; this method is referred to as artificial lift. More than seventy percent of all currently producing oil wells are being produced by artificial lift methods. One of the most applied artificial lift methods is sucker rod pump. Sucker rod pumps are considered a well-established technology in the oil and gas industry and thus are easy to apply, very common worldwide, and low in capital and operational costs. Many advancements in technology have been applied to improve sucker rod pumps performance, applicability range, and diagnostics. With these advancements, it is important to be able to constantly provide an updated review and guide to the utilization of the sucker rod pumps. This research provides an updated comprehensive review of sucker rod pumps components, diagnostics methods, mathematical models, and common failures experienced in the field and how to prevent and mitigate these failures. Based on the review conducted, a new classification of all the methods that can fall under the sucker rod pump technology based on newly introduced sucker rod pump methods in the industry has been introduced. Several field cases studies from wells worldwide are also discussed in this research to highlight some of the main features of sucker rod pumps. Finally, the advantages and limitations of sucker rod pumps are mentioned based on the updated review. The findings of this study can help increase the understanding of the different sucker rod pumps and provide a holistic view of the beam rod pump and its properties and modeling.


2021 ◽  
Author(s):  
P. R. Safiraldi

Objective/Scope: Challenges of sucker rod pumping operation in high gas and solid production;The implementation of integrated down-hole gas and solid separation in one device. Method procedure/processes: Old Rimau Fields in South Sumatera produce oil from sandstone reservoir with GOR above 800 scf/stb and solid production resulted from fracturing proppant flow back. Due to these conditions, some problems such as gas lock or interference, pump leakage, and rod parted were discovered which resulting in low SRP run life. The installation of sand screen and gas anchor has been implemented to encounter this issue. However, this initiative still ineffective due to limited conditions. If the sand screen was installed to control the sand, then the gas anchor to control the gas could not be installed and vice versa.Results, observations, conclusions: Integrated solid and gas handling called "hybrid" device has been introduced. The device is connected directly at the bottom of down-hole pump consist of three section, the upper section for intake and gas separator, the middle section for gas and solid separator, and lower one for solid container. The first utilization was conducted in three SRP wells, which are KG-09, LKP-21, and KG-10. Previously, these wells were shut-in due to down-hole problem. After installing the device while well service, the SRP run normally to produce the oil. The increasing of pump load performance was also obtained, indicated by the dyna card. At this time, the SRP is still running and run life is still under surveillance. This paper will explain the new technology end-to-end implementation of the integrated down-hole sand and gas control in one device for Sucker Rod Pump (SRP) system.


2020 ◽  
pp. 43-45
Author(s):  
L.G. Hajikerimova ◽  
◽  
◽  

The deep pump, mainly sucker-rod deep pumping method is widely applied in the onshore oil wells of Azerbaijan. Despite the fact that the deep-well sucker rod pumping method is widespread, its operation in sand-producing wells is accompanied by various complications. Since mechanical particles wearing the pump parts out, falling into the space between the plunger and the cylinder, either wedge the plunger inside the cylinder or increase the gap between them. To prevent the ingress of large particles of sand into the gap between the plunger and the cylinder of the deep sucker rod pump, a device for sand trapping has been developed. The sand-trapping device is installed within the well tubing strings on the rod string and prevents the big particles of the liquid in the pipes falling into the gap between the plunger and cylinder. As the plunger, the device is started via balanced head. Due to the equipment installation, the liquid injected from the pump undergoes pressure decrease and the conditions for deposition and accumulation of large particles are formed.


Sign in / Sign up

Export Citation Format

Share Document