scholarly journals RESEARCH IN THE INTERPOLATION REPRESENTATIONS OF STOCHASTIC PROCESSES IN THE TWO TYPES OF INTERPOLATION KNOTS

2017 ◽  
Vol 2 ◽  
pp. 3-8
Author(s):  
Ganna Verovkina

The article deals with some interpolation representations of stochastic processes with non-equidistance interpolation knots. Research is based on observations of the process and its derivatives of the first and second orders at some types of knots and observations of the process and its derivatives of the first orders at other types of knots. The necessary results from the theory of entire functions of complex variable are formulated. The function bounded on any bounded region of the complex plane is considered. The estimate of the residual of the interpolation series is obtained. The interpolation formula that uses the value of the process and its derivatives at the knots of interpolation is proved. Considering the separability of the process and the convergence of a row that the interpolation row converges to the stochastic process uniformly over in any bounded area of changing of parameter is obtained. The main purpose of this article is the obtained convergence with probability 1 of the corresponding interpolation series to a stochastic process in any bounded domain of changes of parameter. Obtained results may be applied in the modern theory of information transmission.

2013 ◽  
Vol 16 (4) ◽  
Author(s):  
Danijela Rajter-Ćirić ◽  
Mirjana Stojanović

AbstractWe consider fractional derivatives of a Colombeau generalized stochastic process G defined on ℝn. We first introduce the Caputo fractional derivative of a one-dimensional Colombeau generalized stochastic process and then generalize the procedure to the Caputo partial fractional derivatives of a multidimensional Colombeau generalized stochastic process. To do so, the Colombeau generalized stochastic process G has to have a compact support. We prove that an arbitrary Caputo partial fractional derivative of a compactly supported Colombeau generalized stochastic process is a Colombeau generalized stochastic process itself, but not necessarily with a compact support.


2011 ◽  
Vol 5 (2) ◽  
pp. 283-297 ◽  
Author(s):  
Danijela Rajter-Ciric

We consider Caputo and Riemann-Liouville fractional derivatives of a Colombeau generalized stochastic process G defined on R+. We give proper definitions and prove that both are Colombeau generalized stochastic processes themselves. We also give a solution to a certain Cauchy problem illustrating the application of the theory. 2000 Mathematics Subject Classification: 46F30, 60G20, 60H10, 26A33


2007 ◽  
Vol 2007 ◽  
pp. 1-5 ◽  
Author(s):  
Chunsheng Ma

This paper is concerned with a class of stochastic processes or random fields with second-order increments, whose variograms have a particular form, among which stochastic processes having orthogonal increments on the real line form an important subclass. A natural issue, how big this subclass is, has not been explicitly addressed in the literature. As a solution, this paper characterizes a stochastic process having orthogonal increments on the real line in terms of its variogram or its construction. Our findings are a little bit surprising: this subclass is big in terms of the variogram, and on the other hand, it is relatively “small” according to a simple construction. In particular, every such process with Gaussian increments can be simply constructed from Brownian motion. Using the characterizations we obtain a series expansion of the stochastic process with orthogonal increments.


1999 ◽  
Vol 127 (2) ◽  
pp. 563-567 ◽  
Author(s):  
Arie Harel ◽  
Su Namn ◽  
Jacob Sturm

2016 ◽  
Vol 8 (4) ◽  
pp. 144
Author(s):  
Modou Ngom ◽  
Gane Samb Lo

<div>Let $X_{1,n} \leq .... \leq X_{n,n}$ be the order statistics associated with a sample $X_{1}, ...., X_{n}$ whose pertaining distribution function (\textit{df}) is $F$. We are concerned with the functional asymptotic behaviour of the sequence of stochastic processes</div><div> </div><div>\begin{equation}<br />T_{n}(f,s)=\sum_{j=1}^{j=k}f(j)\left( \log X_{n-j+1,n}-\log<br />X_{n-j,n}\right)^{s} ,  \label{fme}<br />\end{equation}</div><div> </div><div>indexed by some classes $\mathcal{F}$ of functions $f:\mathbb{N}%^{\ast}\longmapsto \mathbb{R}_{+}$ and $s \in ]0,+\infty[$ and where $k=k(n)$ satisfies</div><div> </div><div>\begin{equation*}<br />1\leq k\leq n,k/n\rightarrow 0\text{ as }n\rightarrow \infty .<br />\end{equation*}</div><div> </div><div>We show that this is a stochastic process whose margins generate estimators of the extreme value index when $F$ is in the extreme domain of attraction. We focus in this paper on its finite-dimension asymptotic law and provide a class of new estimators of the extreme value index whose performances are compared to analogous ones. The results are next particularized for one explicit class $\mathcal{F}$.</div>


Author(s):  
Jorma Jormakka ◽  
Sourangshu Ghosh

The paper describes a method of solving some stochastic processes using generating functions. A general theorem of generating functions of a particular type is derived. A generating function of this type is applied to a stochastic process yielding polynomial time algorithms for certain partitions. The method is generalized to a stochastic process describing a rather general linear transform. Finally, the main idea of the method is used in deriving a theoretical polynomial time algorithm to the knapsack problem.


2018 ◽  
Vol 14 (1) ◽  
pp. 7540-7559
Author(s):  
MI lOS lAWA SOKO

Virtually every biological model utilising a random number generator is a Markov stochastic process. Numerical simulations of such processes are performed using stochastic or intensity matrices or kernels. Biologists, however, define stochastic processes in a slightly different way to how mathematicians typically do. A discrete-time discrete-value stochastic process may be defined by a function p : X0 × X → {f : Î¥ → [0, 1]}, where X is a set of states, X0 is a bounded subset of X, Î¥ is a subset of integers (here associated with discrete time), where the function p satisfies 0 < p(x, y)(t) < 1 and  EY p(x, y)(t) = 1. This definition generalizes a stochastic matrix. Although X0 is bounded, X may include every possible state and is often infinite. By interrupting the process whenever the state transitions into the X −X0 set, Markov stochastic processes defined this way may have non-quadratic stochastic matrices. Similar principle applies to intensity matrices, stochastic and intensity kernels resulting from considering many biological models as Markov stochastic processes. Class of such processes has important properties when considered from a point of view of theoretical mathematics. In particular, every process from this class may be simulated (hence they all exist in a physical sense) and has a well-defined probabilistic space associated with it.


2018 ◽  
Vol 24 (2) ◽  
pp. 129-137
Author(s):  
Iryna Rozora ◽  
Mariia Lyzhechko

AbstractThe paper is devoted to the model construction for input stochastic processes of a time-invariant linear system with a real-valued square-integrable impulse response function. The processes are considered as Gaussian stochastic processes with discrete spectrum. The response on the system is supposed to be an output process. We obtain the conditions under which the constructed model approximates a Gaussian stochastic process with given accuracy and reliability in the Banach space{C([0,1])}, taking into account the response of the system. For this purpose, the methods and properties of square-Gaussian processes are used.


1988 ◽  
Vol 40 (04) ◽  
pp. 1010-1024 ◽  
Author(s):  
Clément Frappier

Let Bτ denote the class of entire functions of exponential type τ (&gt;0) bounded on the real axis. For the function f ∊ Bτ we have the interpolation formula [1, p. 143] 1.1 where t, γ are real numbers and is the so called conjugate function of f. Let us put 1.2 The function Gγ,f is a periodic function of α, with period 2. For t = 0 (the general case is obtained by translation) the righthand member of (1) is 2τGγ,f (1). In the following paper we suppose that f satisfies an additional hypothesis of the form f(x) = O(|x|-ε), for some ε &gt; 0, as x → ±∞ and we give an integral representation of Gγ,f(α) which is valid for 0 ≦ α ≦ 2.


Sign in / Sign up

Export Citation Format

Share Document