scholarly journals Development of Augmented Reality Application for Onsite Inspection of Expressway Structures Using Microsoft HoloLens

2021 ◽  
Vol 26 (2) ◽  
pp. 87-116
Author(s):  
Ang Kouch Keang ◽  
Kriengsak Panuwatwanich ◽  
Pakawat Sancharoen ◽  
Somporn Sahachaisaree

This research introduces an augmented reality (AR)-based approach for the onsite inspection of expressway structures by developing an AR application, namely HoloSpector, deployed on the first generation of the Microsoft HoloLens headset. It was tested by a focus group of 10 postgraduate students, followed by three inspectors from the Expressway Authority of Thailand (EXAT), to investigate the practical applicability of the application. A questionnaire was employed as a research tool for measurement and assessment of the application and the HoloLens in this study. The results of this study indicated that the developed digital approach was satisfactory, easy to use and learn, useful, user-friendly and practical for EXAT expressway inspections; the users also intended to use it. Compared to the conventional approach, the current data communication and management could be significantly improved; this digital approach has the potential to help save resources, time and cost and increase work productivity.

Author(s):  
Carsten Matysczok ◽  
Peter Ebbesmeyer ◽  
Holger Krumm ◽  
Jo¨rg Maciej

Recent advances have shown, that the base technology of augmented reality have matured the point of being usable only by specialists. But existing augmented reality applications are still prototypes. They are developed without any authoring system, only by software experts. To support the wide use of augmented reality technology, the designers of augmented reality application need methods and software tools to create the contents in a fast and cheap way. In this paper we describe an authoring system for creating augmented reality content in an easy and user friendly way. The system allows the creation of augmented reality applications in a straight forward way. By using meta-constructs like menus, selection lists or hotspots as well as illustration objects like 3D-models, videos, texts and sounds a variety of applications can be created without previous technological knowledge. A preview window is also part of the authoring system displaying the actual created AR-application.


Author(s):  
Christen E. Sushereba ◽  
Laura G. Militello

In this session, we will demonstrate the Virtual Patient Immersive Trainer (VPIT). The VPIT system uses augmented reality (AR) to allow medics and medical students to experience a photorealistic, life-sized virtual patient. The VPIT supports learners in obtaining the perceptual skills required to recognize and interpret subtle perceptual cues critical to assessing a patient’s condition. We will conduct an interactive demonstration of the virtual patient using both a tablet (for group interaction) and an AR-enabled headset (Microsoft HoloLens) for individual interaction. In addition, we will demonstrate use of the instructor tablet to control what the learner sees (e.g., injury types, severity of injury) and to monitor student performance.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2234
Author(s):  
Sebastian Kapp ◽  
Michael Barz ◽  
Sergey Mukhametov ◽  
Daniel Sonntag ◽  
Jochen Kuhn

Currently an increasing number of head mounted displays (HMD) for virtual and augmented reality (VR/AR) are equipped with integrated eye trackers. Use cases of these integrated eye trackers include rendering optimization and gaze-based user interaction. In addition, visual attention in VR and AR is interesting for applied research based on eye tracking in cognitive or educational sciences for example. While some research toolkits for VR already exist, only a few target AR scenarios. In this work, we present an open-source eye tracking toolkit for reliable gaze data acquisition in AR based on Unity 3D and the Microsoft HoloLens 2, as well as an R package for seamless data analysis. Furthermore, we evaluate the spatial accuracy and precision of the integrated eye tracker for fixation targets with different distances and angles to the user (n=21). On average, we found that gaze estimates are reported with an angular accuracy of 0.83 degrees and a precision of 0.27 degrees while the user is resting, which is on par with state-of-the-art mobile eye trackers.


2021 ◽  
Vol 18 (2) ◽  
pp. 1-16
Author(s):  
Holly C. Gagnon ◽  
Carlos Salas Rosales ◽  
Ryan Mileris ◽  
Jeanine K. Stefanucci ◽  
Sarah H. Creem-Regehr ◽  
...  

Augmented reality ( AR ) is important for training complex tasks, such as navigation, assembly, and medical procedures. The effectiveness of such training may depend on accurate spatial localization of AR objects in the environment. This article presents two experiments that test egocentric distance perception in augmented reality within and at the boundaries of action space (up to 35 m) in comparison with distance perception in a matched real-world ( RW ) environment. Using the Microsoft HoloLens, in Experiment 1, participants in two different RW settings judged egocentric distances (ranging from 10 to 35 m) to an AR avatar or a real person using a visual matching measure. Distances to augmented targets were underestimated compared to real targets in the two indoor, RW contexts. Experiment 2 aimed to generalize the results to an absolute distance measure using verbal reports in one of the indoor environments. Similar to Experiment 1, distances to augmented targets were underestimated compared to real targets. We discuss these findings with respect to the importance of methodologies that directly compare performance in real and mediated environments, as well as the inherent differences present in mediated environments that are “matched” to the real world.


Sign in / Sign up

Export Citation Format

Share Document