Structures and Methods for Controlling Water Erosion

Author(s):  
J. M. Laflen ◽  
R. E. Highfill ◽  
M. Amemiya ◽  
C. K. Mutchler
Keyword(s):  
Author(s):  
Paweł B. Dąbek ◽  
◽  
Romuald Żmuda ◽  
Tomasz Kowalczyk ◽  
Jolanta Dąbrowska ◽  
...  

1993 ◽  
Vol 28 (3-5) ◽  
pp. 101-110 ◽  
Author(s):  
W. v. d. Emde ◽  
H. Fleckseder ◽  
N. Matsché ◽  
F. Plahl-Wabnegg ◽  
G. Spatzierer ◽  
...  

Neusiedlersee (in German) / Fertö tó (in Hungarian) is a shallow lake at the Austro-Hungarian border. In the late 1970s, the question arose what to do in order to protect the lake against eutrophication. A preliminary report established the need for point-source control as well as gave first estimates for non-point source inputs. The proposed point-source control was quickly implemented, non-point sources were - among other topics - studied in detail in the period 1982 - 1986. The preliminary work had shown, based on integrated sampling and data from literature, that the aeolic input outweighed the one via water erosion (work was for totP only). In contrast to this, the 1982 - 1986 study showed that (a) water erosion by far dominates over aeolic inputs and (b) the size of nonpoint-source inputs was assessed for the largest catchment area in pronounced detail, whereas additional estimates were undertaken for smaller additional catchment areas. The methods as well as the results are presented in the following. The paper concludes with some remarks on the present management practice of nonpoint-source inputs.


2014 ◽  
Vol 18 (9) ◽  
pp. 3763-3775 ◽  
Author(s):  
K. Meusburger ◽  
G. Leitinger ◽  
L. Mabit ◽  
M. H. Mueller ◽  
A. Walter ◽  
...  

Abstract. Snow processes might be one important driver of soil erosion in Alpine grasslands and thus the unknown variable when erosion modelling is attempted. The aim of this study is to assess the importance of snow gliding as a soil erosion agent for four different land use/land cover types in a subalpine area in Switzerland. We used three different approaches to estimate soil erosion rates: sediment yield measurements in snow glide depositions, the fallout radionuclide 137Cs and modelling with the Revised Universal Soil Loss Equation (RUSLE). RUSLE permits the evaluation of soil loss by water erosion, the 137Cs method integrates soil loss due to all erosion agents involved, and the measurement of snow glide deposition sediment yield can be directly related to snow-glide-induced erosion. Further, cumulative snow glide distance was measured for the sites in the winter of 2009/2010 and modelled for the surrounding area and long-term average winter precipitation (1959–2010) with the spatial snow glide model (SSGM). Measured snow glide distance confirmed the presence of snow gliding and ranged from 2 to 189 cm, with lower values on the north-facing slopes. We observed a reduction of snow glide distance with increasing surface roughness of the vegetation, which is an important information with respect to conservation planning and expected and ongoing land use changes in the Alps. Snow glide erosion estimated from the snow glide depositions was highly variable with values ranging from 0.03 to 22.9 t ha−1 yr−1 in the winter of 2012/2013. For sites affected by snow glide deposition, a mean erosion rate of 8.4 t ha−1 yr−1 was found. The difference in long-term erosion rates determined with RUSLE and 137Cs confirms the constant influence of snow-glide-induced erosion, since a large difference (lower proportion of water erosion compared to total net erosion) was observed for sites with high snow glide rates and vice versa. Moreover, the difference between RUSLE and 137Cs erosion rates was related to the measured snow glide distance (R2 = 0.64; p < 0.005) and to the snow deposition sediment yields (R2 = 0.39; p = 0.13). The SSGM reproduced the relative difference of the measured snow glide values under different land uses and land cover types. The resulting map highlighted the relevance of snow gliding for large parts of the investigated area. Based on these results, we conclude that snow gliding appears to be a crucial and non-negligible process impacting soil erosion patterns and magnitude in subalpine areas with similar topographic and climatic conditions.


Author(s):  
Hamid Reza Pourghasemi ◽  
Fatemeh Honarmandnejad ◽  
Mahrooz Rezaei ◽  
Mohammad Hassan Tarazkar ◽  
Nitheshnirmal Sadhasivam

2020 ◽  
Vol 13 (1) ◽  
pp. 51
Author(s):  
Alexandra Pagáč Mokrá ◽  
Jakub Pagáč ◽  
Zlatica Muchová ◽  
František Petrovič

Water erosion is a phenomenon that significantly damages agricultural land. The current land fragmentation in Slovakia and the complete ambiguity of who owns it leads to a lack of responsibility to care for the land in its current condition, which could affect its sustainability in the future. The reason so much soil has eroded is obvious when looking at current land management, with large fields, a lack of windbreaks between them, and no barriers to prevent soil runoff. Land consolidation might be the solution. This paper seeks to evaluate redistributed land and, based on modeling by the Universal Soil Loss Equation (USLE) method, to assess the degree of soil erosion risk. Ownership data provided information on how many owners and what amount of area to consider, while taking into account new conditions regarding water erosion. The results indicate that 2488 plots of 1607 owners which represent 12% of the model area are still endangered by water erosion, even after the completion of the land consolidation project. The results also presented a way of evaluating the territory and aims to trigger a discussion regarding an unambiguous definition of responsibility in the relationship between owner and user.


2012 ◽  
Vol 446-449 ◽  
pp. 2554-2559 ◽  
Author(s):  
Jian Jun Cai ◽  
Feng Zhang ◽  
Wei Cui ◽  
Shou Shan Chen ◽  
Pu Lun Liu

In order to effectively assess the concrete strength and deformation property under sea water erosion environment, concrete stress and strain curve was researched with the number of wet and dry cycle of 0 times, 10 times , 20 times, 30 times, 40 times, 50 times and 60 times based on the large-scale static and dynamic stiffness servo test set. The stress - strain curves of concrete was tested for the lateral pressure 10.8MPa, 14.4MPa, and 18.8MPa at different dry-wet cycles, The failure modes and superficial cracking characteristics of specimens are reported at different dry-wet cycles. Concrete elastic modulus and compressive strength were researched. Based on concrete mechanical theory , the classic Kufer-Gerstle strength criteria of concrete was used, a large number of test samples of multivariate data were nonlinear regressed, a biaxial concrete strength criterion was established taking into account the stress ratio and the number of dry-wet cycles.


2019 ◽  
Vol 30 (6) ◽  
pp. 706-716 ◽  
Author(s):  
Lizhi Jia ◽  
Wenwu Zhao ◽  
Bojie Fu ◽  
Stefani Daryanto ◽  
Shuai Wang ◽  
...  

1939 ◽  
Vol XXXVIII (Supplement CL) ◽  
pp. 42-47
Author(s):  
D. Hall
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document