Agronomic Performance and Protein Content of Fall‐planted Triticale, Wheat, and Rye 1

1979 ◽  
Vol 71 (2) ◽  
pp. 359-360 ◽  
Author(s):  
U. R. Bishnoi ◽  
J. L. Hughes
1979 ◽  
Vol 59 (3) ◽  
pp. 831-837 ◽  
Author(s):  
CHARLES F. McGUIRE ◽  
E. A. HOCKETT ◽  
D. M. WESENBERG

Malting and non-malting barleys fertilized with nitrogen were evaluated for qualitative kernel properties, agronomic performance, cultivar-treatment interactions, and the relationship between malt quality and agronomic performance. Sixty-seven kilograms per hectare of N increased the mean yield of five barley cultivars by 38 and 44% over the checks at Ft. Ellis in 1971 (environment 3) and 1973 (environment 4), respectively; 50 kg/ha of N increased yields over the checks at Aberdeen by 8% in both 1971 (environment 1) and 1973 (environment 2). Doubling the rates at either location did not increase yields further. Nitrogen treatments delayed heading dates at Ft. Ellis in 1971 and height of plants increased at Ft. Ellis but not at Aberdeen. Nitrogen increased barley diastatic power (DP), but decreased barley extracts. Barley protein percent increased significantly with each increment of applied N. A differential response of cultivars to applied N resulted in interactions for barley DP and percent protein. Cultivars × environments interacted for grain yield, heading date, barley DP, barley extract, and grain protein content. Nitrogen rates interacted with environment for plant height, barley extract, and grain protein content. Forty-six of 65 simple correlations between malting and agronomic or kernel traits were significant.


2011 ◽  
Vol 59 (4) ◽  
pp. 337-347
Author(s):  
H. Hanaa ◽  
E. Ali

A field experiment was conducted at the Agriculture Faculty Farm of Sebha University during the 2007/2008 and 2008/2009 winter seasons to study the agronomic performance of seven pea genotypes with different sowing dates in sandy soil. The experiment was laid out in a randomized complete block design (RCBD) using a split-plot arrangement with three replicates. The five sowing dates (30 October, 15 November, 30 November, 15 December and 30 December) were assigned to the main plots, while the seven pea genotypes (Ambassador, Pollon, MG130256, G22765-2c, 89-P-109-11, No. 252, Victory Freezer and Master B) were allocated to the sub-plots. The sowing dates had a significant effect on all the studied traits except seed protein content in both seasons. Early sowing (15 November) was better than the other sowing dates for all the traits except 100-seed weight. There were significant differences between the pea genotypes for all the traits in the two growing seasons. The Victory Freezer genotype surpassed the other genotypes for all traits except number of branches plant-1 in the second season, 100-seed weight and seed protein content. The highest values for number of branches plant−1 in the second season and for seed protein content were obtained for the G22765-2c genotype, while the maximum values of 100-seed weight were recorded for the MG130256 genotype. A significant interaction between sowing dates and pea genotypes was detected for the length of the period from emergence to initial flowering, number of pods plant−1, seed yield plant−1 and seed yield ha-1 in both seasons. The longest period from emergence to initial flowering was obtained for the Victory Freezer pea variety sown on 30 November, while the highest values of pods plant−1, seed yield plant−1 and seed yield ha−1 were gained by sowing the Victory Freezer pea genotype on 15 November.


2019 ◽  
Vol 13 (02) ◽  
pp. 179-184
Author(s):  
José Rodrigo de Araújo Guimarães ◽  
◽  
Jordany Aparecida de Oliveira Gomes ◽  
Daniela Aparecida Teixeira ◽  
Filipe Pereira Giardini Bonfim ◽  
...  

2013 ◽  
Vol 13 (58) ◽  
pp. 7693-7710
Author(s):  
Haile D ◽  
◽  
R Nigussie-Dechassa ◽  
W Abdo ◽  
F Girma ◽  
...  

The use of optimum seeding rate for the genotype may enhance productivity and grain protein content of durum wheat. Therefore, an experiment was conducted at two locations in south-eastern Ethiopia during the main cropping season of 2008 with the objective of elucidating the effects of seeding rate and genotype on agronomic performance and grain protein content of the crop. The experiment consisted of factorial arrangements of four improved durum wheat genotypes and five seeding rates, which were laid out as a randomized complete block design with three replicates. Seeding rates significantly influenced agronomic performances including number of fertile spikes m-2, plant height, number of seeds spike-1, and grain yield. Number of fertile spikes m-2 was increased proportionally with the seeding rate and the highest number (382 spikes m-2) was recorded in the highest seeding rate of 200kg ha-1. Inversely, the highest number of kernels spike-1 (29.8) was at the seeding rate of 100 kg ha-1. The highest grain yield (4341 kg ha-1) was obtained in response to seeding rate of 175 kg ha-1, which was in statistical parity with the yield obtained at the seeding rate of 150 kg ha-1. However, grain protein content was not influenced by the seeding rates. There were significant (P ≤ 0.05) variations among the genotypes for all the agronomic traits measured. The largest number of fertile spikes m-2 was recorded for the genotypes Oda (360 spikes m-2) and Bakalcha (345 spikes m-2). Genotype Illani produced the longest spike (6.9 cm). Oda and Illani produced the highest numbers of seeds spike-1, 38.8 and 36.9, respectively. The number of fertile spikes m-2, number of seeds spike-2 and kernels weight significantly contributed grain yield. The genotypes had exhibited less variation for grain protein content. Except for grain yield and harvest index, seeding rate x genotype interaction had no significant effect on other agronomic traits. Highest grain yields of 4938 kg ha-1 and 4774 kg ha1 were obtained from genotypes Ejersa and Bakalcha when sown at the seeding rate of 150 kg ha-1 and 175 kg ha-1, respectively. Grain protein response was significantly influenced by the interaction effect in which genotype Oda had the highest (12.9%) and lowest (10.5%) protein contents at the highest (200 kg ha-1) and lowest (100 kg ha-1) seeding rates, respectively.


2021 ◽  
pp. 209-219
Author(s):  
Mirjana Jankulovska ◽  
Sonja Ivanovska ◽  
Ljupcho Jankuloski ◽  
Mile Markoski ◽  
Biljana Kuzmanovska ◽  
...  

Abstract The main goals of this study were to evaluate the agronomic performance of wheat mutant lines; to detect the effect of genotype, location and different fertilizer levels on analysed traits; to assess seed and feed quality; and to select best performing mutant lines for dual-purpose growing. Ten wheat mutant lines were sown on two locations in Macedonia, for evaluation of their agronomic performance. At both locations, grain yield, straw mass, harvest index, nitrogen use efficiency, nitrogen and protein content in seed and straw, neutral detergent fibre and acid detergent fibre in the straw were determined. In order to classify the genotypes based on all analysed traits, two-way cluster analysis was applied. According to their overall performance, at both locations and with the three different fertilization treatments, the mutant lines were classified in two main groups. The first cluster consisted of mutants 5/1-8, 2/2-21, 4/2-56 and 2/1-51, characterized by very high values for seed yield, straw yield and harvest index, and high to moderate values for all other traits. Only 4/2-56 had very low values for N and protein content in the seed. One mutant line, 6/2-2, did not belong to any of the groups and differed from all other genotypes based on its very low seed and straw yield and very high values for nitrogen and protein content in the straw and neutral detergent fibre. All other mutants belonged to the second group, with low to moderate yield and moderate to high values for the other traits. Mutant lines with the highest seed and straw yield, as well as the best quality of seed and straw under different management systems, were identified and after additional evaluation will be submitted for official variety registration.


Author(s):  
Claudia Luiza Maziero ◽  
Reginaldo Ferreira Santos ◽  
Doglas Bassegio ◽  
Cristiano Fernando Lewandoski ◽  
Paulo de Lima Bueno ◽  
...  

North American safflower cultivars can be considered as alternatives for cultivation in light of the limited improvement in the commercially grown and registered cultivars in Brazil. This study aimed to evaluate the initial growth and agronomic performance of North American safflower cultivars in Brazil. The experimental design for North American cultivars included random blocks with six cultivars (S-351, 3307, 8311, 0260, 0210 and S-323) and six replicates. The emergence percentage, emergence speed index, average emergence time, and average emergence speed were determined at 15 days after emergence (DAE). Plant height, stem diameter, number of leaves per plant, fresh plant mass, and dry plant mass were determined at 30 DAE. Plant height, stem diameter, number of branches, number of chapters, number of leaves, fresh plant mass, dry plant mass, fresh root mass, and dry root mass were determined at the flowering stage. The final plant density, number of chapters per plant, 100-grain weight, grain yield, oil content, and protein content were determined at the harvest stage. Cultivar S-351 had the greatest initial growth and exhibited greater emergence and emergence speed index. At 30 DAE, the cultivars did not differ with respect to the accumulation of dry mass and number of leaves. During flowering, cultivars S-323 and 8311 had greater accumulation of plant and root dry mass, as well as a greater number of leaves, branches, and chapters. Cultivars 210 and 260 had higher grain yield, whereas cultivars 3307 and S-323 had higher oil content, and cultivar S-351 had higher protein content.


Planta Medica ◽  
2010 ◽  
Vol 76 (12) ◽  
Author(s):  
N Ebrahimi ◽  
M Moein ◽  
S Moein

Planta Medica ◽  
2016 ◽  
Vol 81 (S 01) ◽  
pp. S1-S381
Author(s):  
AC Keller ◽  
LA Knaub ◽  
PM McClatchey ◽  
CA Connon ◽  
JEB Reusch
Keyword(s):  

1986 ◽  
Vol 56 (03) ◽  
pp. 288-292 ◽  
Author(s):  
Diego Mezzano ◽  
Eduardo Aranda ◽  
Arnaldo Foradori

SummaryThe size, total protein, fibrinogen and 5-HT content were evaluated in density subpopulations of human and canine platelets fractionated in linear arabinogalactan gradients. The methodology was assessed to ascertain that platelet separation was by density and to discard artifactual changes and platelet release during the procedure. EDTA or PGEi increased the size of human PRP-platelets, but not of dog platelets. In humans, high density (HD) platelets were 1.26 times larger and contained 1.88 times more fibrinogen, 2.23 times more 5-HT and 1.37 times more protein than low density (LD) platelets; in dogs, these density cohorts did not differ in protein content, but LD platelets were 1.29 times larger and had 1.33 times more fibrinogen and 5-HT than HD platelets. These findings suggest that cell density is mostly dependent on the protein content per unit volume of platelets (and not on dense bodies). The differences in fibrinogen and 5-HT content between HD and LD cohorts in humans and dogs may be related to platelet age. The difference in volume between HD and LD platelets in dogs is of uncertain interpretation.


Sign in / Sign up

Export Citation Format

Share Document