Can Topographical and Yield Data Substantially Improve Total Soil Carbon Mapping by Regression Kriging?

2007 ◽  
Vol 99 (1) ◽  
pp. 12-17 ◽  
Author(s):  
A. N. Kravchenko ◽  
G. P. Robertson
2009 ◽  
Vol 73 (6) ◽  
pp. 2059-2067 ◽  
Author(s):  
S. Senthilkumar ◽  
A. N. Kravchenko ◽  
G. P. Robertson

2006 ◽  
Vol 98 (3) ◽  
pp. 823-829 ◽  
Author(s):  
A. N. Kravchenko ◽  
G. P. Robertson ◽  
S. S. Snap ◽  
A. J. M. Smucker

1972 ◽  
Vol 78 (2) ◽  
pp. 333-341 ◽  
Author(s):  
E. A. Garwood ◽  
C. R. Clement ◽  
T. E. Williams

SUMMARYMacro-organic matter (roots and partially decomposed plant debris retained on a 0·25 mm mesh sieve) was measured in soils under various swards. Under a grazed perennial ryegrass/white clover sward, sown on arable land, macro-organic matter in the top 15 cm of soil rose steadily in the first 8 years to 15·8 t/ha, but subsequently declined. Under arable cropping there was great variation with crop and season. Under grass, most of the macro-organic matter accumulated in the top 2 cm of soil, particularly during the first 3 or 4 years. More macro-organic matter was found under perennial ryegrass/white clover than under cocksfoot/white clover swards.After 3 years under grass macro-organic matter accounted for 10% of the total soil carbon, and represented about half the increase in soil carbon.Half, or less, of the nitrogen which accumulated in soil under grass was in the macroorganic matter fraction. The differences between swards which received no N fertilizer and those which received 940 kg/ha over 3 years was small, 16–40 kg N/ha respectively for cut and frequently grazed swards. The ratio of C:N in macro-organic matter under different swards averaged 22:1.


Soil Research ◽  
2003 ◽  
Vol 41 (5) ◽  
pp. 889 ◽  
Author(s):  
T. A. Knowles ◽  
B. Singh

Soil carbon is an important component of the global carbon cycle with an estimated pool of soil organic carbon of about 1500 Gt. There are few estimates of the pool of inorganic carbon, but it is thought to be approximately 50% of the organic carbon pool. There is no detailed study on the estimation of the soil carbon pool for Australian soils.In order to quantify the carbon pools and to determine the extent of spatial variability in the organic and inorganic carbon pools, 120 soil cores were taken down to a depth of 0.90 m from a typical cotton field in northern NSW. Three cores were also taken from nearby virgin bushland and these samples were used as paired samples. Each soil core was separated into 4 samples, i.e. 0–0.15, 0.15–0.30, 0.30–0.60, and 0.60–0.90 m. Soil organic carbon was determined by wet oxidation and inorganic carbon content was determined using the difference between total carbon and organic carbon, and confirmed by the acid dissolution method. Total carbon was measured using a LECO CHN analyser. Soil organic carbon of the field constituted 62% (0–0.15 m), 58% (0.15–0.30 m), 60% (0.30–0.60 m), and 67% (0.60–0.90 m) of the total soil carbon. The proportion of inorganic carbon in total carbon is higher than the global average of 32%. Organic carbon content was relatively higher in the deeper layers (>0.30�m) of the studied soils (Vertosols) compared with other soil types of Australia. The carbon content varied across the field, however, there was little correlation between the soil types (grey, red, or intergrade colour) and carbon content. The total soil carbon pool of the studied field was estimated to be about 78 t/ha for 0–0.90 m layer, which was approximately 58% of the total soil carbon in the soil under nearby remnant bushland (136 t/ha). The total pool of carbon in the cotton soils of NSW was estimated to be 44.8 Mt C, where organic carbon and inorganic carbon constitute 34.9 Mt C and 9.9 Mt C, respectively. Based on the results of a limited number of paired sites under remnant vegetation, it was estimated that about 18.9 Mt of C has been lost from Vertosols by cotton cropping in NSW. With more sustainable management practices such as conservation tillage and green manuring, some of the lost carbon can be resequestered, which will help to mitigate the greenhouse effect, improve soil quality and may increase crop yield.


2014 ◽  
Vol 94 (2) ◽  
pp. 157-168 ◽  
Author(s):  
Caroline M. Preston ◽  
Charlotte E. Norris ◽  
Guy M. Bernard ◽  
David W. Beilman ◽  
Sylvie A. Quideau ◽  
...  

Preston, C. M., Norris, C. E., Bernard, G. M., Beilman, D. W., Quideau, S. A. and Wasylishen, R. E. 2014. Carbon and nitrogen in the silt-size fraction and its HCl-hydrolysis residues from coarse-textured Canadian boreal forest soils. Can. J. Soil Sci. 94: 157–168. Improving the capacity to predict changes in soil carbon (C) stocks in the Canadian boreal forest requires better information on the characteristics and age of soil carbon, especially more slowly cycling C in mineral soil. We characterized C in the silt-size fraction, as representative of C stabilized by mineral association, previously isolated in a study of soil profiles of four sandy boreal jack pine sites. Silt-size fraction accounted for 13–31% of the total soil C and 12–51% of the total soil N content. Solid-state 13C nuclear magnetic resonance spectroscopy showed that silt C was mostly dominated by alkyl and O,N-alkyl C, with low proportions of aryl C in most samples. Thus, despite the importance of fire in this region, there was little evidence of storage of pyrogenic C. We used HCl hydrolysis to isolate the oldest C within the silt-size fraction. Consistent with previous studies, this procedure removed 21–74% of C and 74–93% of N, leaving residues composed mainly of alkyl and aryl C. However, it failed to isolate consistently old C; 11 out of 16 samples had recent 14C ages (fraction of modern 14C > 1), although C-horizon samples were older, with Δ14C from –17 to –476‰. Our results indicate relatively young ages for C associated with the silt-size fractions in these sites, for which mineral soil C storage may be primarily limited by good drainage and coarse soil texture, exacerbated by losses due to periodic wildfire.


2002 ◽  
Vol 32 (5) ◽  
pp. 805-812 ◽  
Author(s):  
J S Bhatti ◽  
M J Apps ◽  
C Tarnocai

This study compared three estimates of carbon (C) contained both in the surface layer (0–30 cm) and the total soil pools at polygon and regional scales and the spatial distribution in the three prairie provinces of western Canada (Alberta, Saskatchewan, and Manitoba). The soil C estimates were based on data from (i) analysis of pedon data from both the Boreal Forest Transect Case Study (BFTCS) area and from a national-scale soil profile database; (ii) the Canadian Soil Organic Carbon Database (CSOCD), which uses expert estimation based on soil characteristics; and (iii) model simulations with the Carbon Budget Model of the Canadian Forest Sector (CBM-CFS2). At the polygon scale, good agreement was found between the CSOCD and pedon (the first method) total soil carbon values. Slightly higher total soil carbon values obtained from BFTCS averaged pedon data (the first method), as indicated by the slope of the regression line, may be related to micro- and meso-scale geomorphic and microclimate influences that are not accounted for in the CSOCD. Regional estimates of organic C from these three approaches for upland forest soils ranged from 1.4 to 7.7 kg C·m–2 for the surface layer and 6.2 to 27.4 kg C·m–2 for the total soil. In general, the CBM-CFS2 simulated higher soil C content compared with the field observed and CSOCD soil C estimates, but showed similar patterns in the total soil C content for the different regions. The higher soil C content simulated with CBM-CFS2 arises in part because the modelled results include forest floor detritus pool components (such as coarse woody debris, which account for 4–12% of the total soil pool in the region) that are not included in the other estimates. The comparison between the simulated values (the third method) and the values obtained from the two empirical approaches (the first two methods) provided an independent test of CBM-CFS2 soil simulations for upland forests soils. The CSOCD yielded significantly higher C content for peatland soils than for upland soils, ranging from 14.6 to 28 kg C·m–2 for the surface layer and 60 to 181 kg C·m–2 for the total peat soil depth. All three approaches indicated higher soil carbon content in the boreal zone than in other regions (subarctic, grassland).


2020 ◽  
Author(s):  
Fabian Kalks ◽  
Gabriel Noren ◽  
Carsten Mueller ◽  
Mirjam Helfrich ◽  
Janet Rethemeyer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document