Allelopathic Potential of Various Plant Species on Downy Brome: Implications for Weed Control in Wheat Production

2007 ◽  
Vol 99 (1) ◽  
pp. 127-132 ◽  
Author(s):  
Stephen Machado
Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 818
Author(s):  
Giuseppe De Mastro ◽  
Jihane El Mahdi ◽  
Claudia Ruta

In all farming systems, weeds are the most expensive pest to manage, accounting for 30% of potential losses. In organic farming, the problem may be further amplified by restrictions on herbicides, thus making weeds the main problem faced by organic farmers in the field. In this sense, much research is focusing on the allelopathic potential of plants as an ecological weed control tool. Many plant species can release allelopathic compounds with high phytotoxicity that can be used in weed control. Species belonging to the Lamiaceae family have been studied widely for this purpose, and their essential oils (EOs) appear to be promising bioherbicides. However, there are still many challenges for their development. Considering these aspects, a review of the bioherbicidal effect of EOs from Mediterranean Lamiaceae could help identify the most effective ones and the challenges for their actual development.


2022 ◽  
Vol 3 ◽  
Author(s):  
Raven A. Bough ◽  
Todd A. Gaines ◽  
Franck E. Dayan

Quizalofop-resistant wheat is the core component of the recently commercialized CoAXium™ Wheat Production System. As with other herbicides, quizalofop provides better weed control at early growth stages and under optimum temperature. However, in regions with winter wheat production, quizalofop application may be affected by unpredictable, rapid temperature decreases. Temperature shifts can cause crop injury or impact weed control efficacy. In the following study, we examine the effect of reduced temperature on quizalofop content and metabolism in CoAXium™ winter wheat and three winter weed species: downy brome (Bromus tectorum L.), feral rye (Secale cereale L.), and jointed goatgrass (Aegilops cylindrica Host). Temperature conditions include either 19 or 4.5°C daytime temperatures with tissue sampling over 5 timepoints (1–16 or 18 days after treatment, DAT). Analysis features liquid chromatography coupled to tandem mass spectrometry detection of the active form of quizalofop, quizalofop acid. Quizalofop content trends reveal delayed metabolism under cooler conditions for wheat and weeds. Quizalofop content peaks within 1–2 DAT in the warmer temperatures for all species and decreases thereafter. In contrast, content peaks between 8 and 9 DAT at cooler temperatures except for downy brome. Minimal decreases in content over time generally follow cooler temperature peaks. Further, the absence of differences in maximum quizalofop content in all species suggests absorption and/or de-esterification of quizalofop proherbicide to the active form is not reduced at cooler temperatures. Final dry shoot tissue biomass does not necessarily correspond to differences in metabolism, as biomass of wheat treated with a field rate of quizalofop does not differ between temperatures. Weeds were treated with sublethal doses of quizalofop in order to monitor herbicide metabolism without causing plant death. Under this condition, weed biomass only differs for jointed goatgrass, which has a greater biomass in the cooler temperature.


2010 ◽  
Vol 50 (1) ◽  
pp. 41-44 ◽  
Author(s):  
Khawar Jabran ◽  
Muhammad Farooq ◽  
Mubshir Hussain ◽  
Muhammad Ali ◽  

Wild Oat (Avena FatuaL.) and Canary Grass (Phalaris MinorRitz.) Management Through AllelopathyEnvironmental contamination, herbicide resistance development among weeds and health concerns due to over and misuse of synthetic herbicides has led the researchers to focus on alternative weed management strategies. Allelochemicals extracted from various plant species can act as natural weed inhibitors. In this study, allelopathic extracts from four plant species sorghum [Sorghum bicolor(L.) Moench], mulberry (Morus albaL.), barnyard grass [Echinochloa crusgalli(L.) Beauv.], winter cherry [Withania somnifera(L.)] were tested for their potential to inhibit the most problematic wheat (Triticum aestivumL.) weeds wild oat (Avena fatuaL.) and canary grass (Phalaris minorRitz.). Data regarding time to start germination, time to 50% germination, mean germination time, final germination percentage, germination energy, root and shoot length, number of roots, number of leaves, and seedling fresh and dry weight was recorded for both the weeds, which showed that mulberry was the most inhibitory plant species while sorghum showed least allelopathic suppression against wild oat. Mulberry extracts resulted in a complete inhibition of the wild oat germination. The allelopathic potential for different plants against wild oat was in the order: mulberry > winter cherry > barnyard grass > sorghum. Mulberry, barnyard grass and winter cherry extracts resulted in a complete inhibition of canary grass. Sorghum however exhibited least suppressive or in some cases stimulatory effects on canary grass. Plants revealing strong allelopathic potential can be utilized to derive natural herbicides for weed control.


2006 ◽  
Vol 86 (3) ◽  
pp. 875-885 ◽  
Author(s):  
J. R. Moyer ◽  
S. N. Acharya

Weeds, especially dandelion (Taraxacum officinale Weber in F.H. Wigg.), tend to infest a forage alfalfa (Medicago sativa L.) stand 2 to 4 yr after establishment. To develop better weed management systems, experiments were conducted at Lethbridge, Alberta, from 1995 to 2002 and Creston, British Columbia, from 1998 to 2001, which included the alfalfa cultivars Beaver (standard type) and AC Blue J (Flemish type) and annual applications of metribuzin and hexazinone. These herbicides are registered for weed control in irrigated alfalfa in Alberta and alfalfa grown for seed. In addition, two sulfonylurea herbicides, metsulfuron and sulfosulfuron, and glyphosate were included. All of the herbicides except glyphosate controlled or suppressed dandelion and mustard family weeds. Metsulfuron at 5 g a.i. ha-1 almost completely controlled dandelion at both locations. However, after metsulfuron application at Lethbridge, dandelion was replaced with an infestation of downy brome, which is unpalatable for cattle. None of the herbicides increased total forage (alfalfa + weed) yield, and in some instances herbicides reduced forage quality by causing a shift from a palatable to an unpalatable weed species. However, it was observed that AC Blue J consistently yielded more than Beaver, and weed biomass was consistently less in the higher-yielding cultivar. AC Blue J was developed primarily for the irrigated area in southern Alberta and for southern British Columbia. Therefore, additional experiments should be conducted to determine which alfalfa cultivars have the greatest ability to compete with weeds in other regions of western Canada. Key words: Alfalfa yield, dandelion, forage quality, weed control


Oecologia ◽  
2017 ◽  
Vol 183 (4) ◽  
pp. 1155-1165 ◽  
Author(s):  
Scott J. Meiners ◽  
Kelsey K. Phipps ◽  
Thomas H. Pendergast ◽  
Thomas Canam ◽  
Walter P. Carson

2002 ◽  
Vol 20 (1) ◽  
pp. 11-28 ◽  
Author(s):  
Meeri Saario ◽  
Susanna Koivusalo ◽  
Into Laakso ◽  
Janne Autio

Weed Science ◽  
1978 ◽  
Vol 26 (2) ◽  
pp. 151-153 ◽  
Author(s):  
D. G. Swan

Six herbicides, simazine [2-chloro-4,6-bis(ethylamino)-s-triazine], propham (isopropyl carbanilate), terbacil (3-tert-butyl-5-chloro-6-methyluracil), carbetamide [D-N-ethyllactamide carbanilate (ester)], pronamide [3,5-dichloro(N-1,1-dimethyl-2-propynyl)benzamide], and secbumeton [N-ethyl-6-methoxy-N′(1-methylpropyl)-1,3,5-triazine-2,4-diamine] were applied annually for four years to establish forage alfalfa(Medicago sativaL. ‘Washoe’). Downy brome(Bromus tectorumL.) control ranged from 80 to 100%. The average control of broadleaf weeds was 90 to 100% with simazine, terbacil, and secbumeton, compared to 30 to 40% with propham, carbetamide, and pronamide. Only simazine and terbacil were phytotoxic to the alfalfa. Based on weed control and crop tolerance, secbumeton performed best on the coarsetextured soil in this experiment.


Weed Science ◽  
1987 ◽  
Vol 35 (S1) ◽  
pp. 24-27 ◽  
Author(s):  
G. R. Stephenson ◽  
G. Ezra

Combinations of antagonistic herbicides can be helpful in the search for seed-applied chemical safeners to protect crop plants from herbicide injury. If a particular herbicide combination is selectively antagonistic so that the crop is not injured but weed control efficacy is not reduced, it should be possible to develop a new, more selective formulation of the herbicide which includes the antagonist or antidote. A promising new approach involves the use of early pretreatments of crop plants with subtoxic levels of a particular herbicide to increase crop tolerance to later, higher rates of that herbicide. When there are different mechanisms for herbicide detoxification in different plant species, it should also be possible to develop selective herbicide synergists that would provide equal efficacy at lower rates with greater crop tolerance. As our knowledge of herbicide metabolism and mode of action develops, it will be increasingly possible to use other chemicals to selectively synergize or safen herbicides to solve problems in important crop-weed situations.


2017 ◽  
Vol 68 (11) ◽  
pp. 1070 ◽  
Author(s):  
E. Barilli ◽  
M.-H. Jeuffroy ◽  
J. Gall ◽  
S. de Tourdonnet ◽  
S. Médiène

Changing agricultural practices from conventional to conservation tillage generally leads to increased weed populations and herbicide use. To gain information about the possible use of lucerne (Medicago sativa L.) cover crop as an alternative and sustainable weed-control strategy for winter wheat (Triticum aestivum L.), an experiment was performed at Thiverval-Grignon, France, from 2008 to 2010. We compared conventional and reduced tillage as well as the presence and absence of living mulch (i.e. lucerne) on weeds and wheat production. Percentage soil coverage and aboveground biomass of wheat, lucerne and weeds were measured at the end of grain filling. Weed communities were analysed in terms of composition and diversity. During both seasons, wheat biomass did not significantly decrease in reduced-till trials compared with conventional ones (7.0 and 7.2 t ha–1, respectively, in 2008–09; 6.9 and 7.1 t ha–1 in 2009–10). Regardless of soil management, the percentage soil coverage by wheat significantly decreased when it was intercropped, although wheat biomass was not significantly reduced compared with the sole crop. To minimise cash-crop losses, we studied the competition between wheat, lucerne and weeds, testing various herbicide strategies. Early control of lucerne allowed better balance between weed control and wheat development. In addition, weed communities varied among treatments in terms of abundance and composition, being reduced but more varied in plots associated with lucerne. A functional group analysis showed that grasses benefited from reduced-till conditions, whereas problematic weeds such as annuals with creeping and climbing morphologies were substantially reduced. In addition, annual and perennial broad-leaf species with rosette morphology were also significantly decreased when lucerne was used as living mulch. Wheat production in reduced-till conditions intercropped with lucerne living mulch may be useful for integrated weed management, reducing the need for herbicides.


Sign in / Sign up

Export Citation Format

Share Document