Radiation Use Efficiency and Yield Response of Winter Wheat to Planting Patterns and Irrigation in Northern China

2014 ◽  
Vol 106 (1) ◽  
pp. 168-174 ◽  
Author(s):  
Y. Y. Han ◽  
G. Y. Wang ◽  
X. B. Zhou ◽  
Y. H. Chen ◽  
P. Liu
2011 ◽  
Vol 62 (10) ◽  
pp. 840 ◽  
Author(s):  
E. Chakwizira ◽  
D. J. Moot ◽  
W. R. Scott ◽  
A. L. Fletcher ◽  
S. Maley

Inadequate phosphorus (P) supply at crop establishment can reduce dry matter (DM) accumulation. A field experiment quantified the effects of banded or broadcast P fertiliser (0, 20, 40 or 60 kg P/ha) applied at establishment to moderately fertile soils on growth and development of ‘Regal’ kale (Brassica oleracea var. acephala L.) crops. DM yield increased from 8710 to ~11 400 kg/ha by the addition of P fertiliser but was unaffected by the method of P application. The control crops accumulated 630 kg DM/100 degree-day (degree-day-accumulated heat available for crop growth) compared with ~800 kg/100 degree-day for the P-fertilised crops. The yield response to P was caused by an increased rate of development of leaf area index (LAI) and consequently earlier canopy closure that led to higher accumulated radiation interception (RIcum). The maximum LAI for the control crops was 3.80 or 24% lower than for fertilised crops. At the final harvest total RIcum for P-fertilised crops was 22% higher than the 592 MJ/m2 for the control, and this accounted for 80% of their yield differences. Leaf appearance rates were unaffected by P supply, with a common phyllochron of 109 degree-day. There was a consistent relationship between light interception and LAI, with a critical LAI of 3.40, extinction coefficient of 0.90 and radiation-use efficiency of 1.56 g/MJ photosynthetically active radiation. Overall, these results support a starter P application of at least 20 kg P/ha at establishment to maximise yields for kale crops when initial soil Olsen P levels ranged from 9 to 17 mg/kg soil.


2009 ◽  
Vol 55 (No. 2) ◽  
pp. 85-91 ◽  
Author(s):  
Q. Li ◽  
M. Liu ◽  
J. Zhang ◽  
B. Dong ◽  
Q. Bai

To better understand the potential for improving biomass accumulation and radiation use efficiency (RUE) of winter wheat under deficit irrigation regimes, in 2006–2007 and 2007–2008, an experiment was conducted at the Luancheng Experimental Station of Chinese Academy of Science to study the effects of deficit irrigation regimes on the photosynthetic active radiation (PAR), biomass accumulation, grain yield, and RUE of winter wheat. In this experiment, field experiment involving winter wheat with 1, 2 and 3 irrigation applications at sowing, jointing, or heading stages was conducted, and total irrigation water was all controlled at 120 mm. The results indicate that irrigation 2 or 3 times could help to increase the PAR capture ratio in the later growing season of winter wheat; this result was mainly due to the changes in the vertical distributions of leaf area index (LAI) and a significant increase of the LAI at 0–20 cm above the ground surface (LSD, <i>P</i> < 0.05). Compared with irrigation only once during the growing season of winter wheat, irrigation 2 times significantly (LSD, <i>P</i> < 0.05) increased aboveground dry matter at maturity; irrigation at sowing and heading or jointing and heading stages significantly (LSD, <i>P</i> < 0.05) improved the grain yield, and irrigation at jointing and heading stages provided the highest RUE (0.56 g/mol). Combining the grain yield and RUE, it can be concluded that irrigation at jointing and heading stages has higher grain yield and RUE, which will offer a sound measurement for developing deficit irrigation regimes in North China.


2015 ◽  
Vol 38 (6) ◽  
Author(s):  
John B. O. Ogola

Crop productivity may be increased by manipulating management practices that enhance resource capture and utilisation during yield formation. This study aimed at assessing the effect of Rhizobium inoculation on growth, yield and radiation use of two chickpea cultivars at Thohoyandou, South Africa in winter 2011 and 2012. Nodulation was determined at flowering, crop biomass and grain yield were determined at harvest maturity, intercepted total radiation was determined by measuring photosynthetically active radiation above and below the crop canopy at 7-days intervals using an AccuPAR ceptometer, and radiation use efficiency was calculated as ratio of yield to intercepted total radiation. Number and weight of nodules per plant were greater with inoculation compared with the control. There were no significant differences in crop biomass, grain yield, harvest index, intercepted total radiation and radiation use efficiency between Rhizobium inoculation and the non-inoculated control. The low yield and non-significant effect of Rhizobium inoculation suggest that (i) the productivity of chickpea was probably constrained by factors other than nitrogen deficiency; or (ii) there was no difference in nitrogen fixation between the inoculated and non-inoculated treatments. However, further field trials should be conducted, over several seasons, before any definite conclusions can be drawn.


2008 ◽  
Vol 54 (No. 7) ◽  
pp. 313-319 ◽  
Author(s):  
H. Han ◽  
Z. Li ◽  
T. Ning ◽  
X. Zhang ◽  
Y. Shan ◽  
...  

Water stress is a frequent and critical limit to wheat (<I>Triticum aestivum</I> L.) production in North China. It has been shown that photosynthetic active radiation (PAR) is closely related to crop production. An experiment was conducted to investigate the effects of deficit irrigation and winter wheat varieties on the PAR capture ration, PAR utilization and grain yield. Field experiments involved Jimai 20 (J; high yield variety) and Lainong 0153 (L; dryland variety) with non-irrigation and irrigated at jointing stage. The results showed that whether irrigated at jointing stage or not, there was no significant difference between J and L with respect to the amount of PAR intercepted by the winter wheat canopies. However, significant differences were observed between the varieties with respect to the amount of PAR intercepted by plants that were 60–80 cm above the ground surface. This result was mainly caused by the changes in the vertical distributions of leaf area index (LAI). As a result, the effects of the varieties and deficit irrigation on the radiation use efficiency (RUE) and grain yield of winter wheat were due to the vertical distribution of PAR in the winter wheat canopies. During the late growing season of winter wheat, irrespective of the irrigation regime, the RUE and grain yield of J were significantly (LSD, <I>P</I> < 0.05) higher than those of L. These results suggest that a combination of deficit irrigation and a suitable winter wheat variety should be applied in North China.


2018 ◽  
Vol 17 (3) ◽  
pp. 566-578 ◽  
Author(s):  
Zhi-qiang TAO ◽  
De-mei WANG ◽  
Shao-kang MA ◽  
Yu-shuang YANG ◽  
Guang-cai ZHAO ◽  
...  

2008 ◽  
Vol 95 (4) ◽  
pp. 469-476 ◽  
Author(s):  
Quanqi Li ◽  
Yuhai Chen ◽  
Mengyu Liu ◽  
Xunbo Zhou ◽  
Songlie Yu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document