Variability, Combining Ability, and Interrelationships of Anther Length, Anther Extrusion, Glume Tenacity, and Shattering in Spring Wheat 1

Crop Science ◽  
1978 ◽  
Vol 18 (2) ◽  
pp. 267-272 ◽  
Author(s):  
G. Atashi‐Rang ◽  
K. A. Lucken
Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 895
Author(s):  
Samira El Hanafi ◽  
Souad Cherkaoui ◽  
Zakaria Kehel ◽  
Ayed Al-Abdallat ◽  
Wuletaw Tadesse

Hybrid wheat breeding is one of the most promising technologies for further sustainable yield increases. However, the cleistogamous nature of wheat displays a major bottleneck for a successful hybrid breeding program. Thus, an optimized breeding strategy by developing appropriate parental lines with favorable floral trait combinations is the best way to enhance the outcrossing ability. This study, therefore, aimed to dissect the genetic basis of various floral traits using genome-wide association study (GWAS) and to assess the potential of genome-wide prediction (GP) for anther extrusion (AE), visual anther extrusion (VAE), pollen mass (PM), pollen shedding (PSH), pollen viability (PV), anther length (AL), openness of the flower (OPF), duration of floret opening (DFO) and stigma length. To this end, we employed 196 ICARDA spring bread wheat lines evaluated for three years and genotyped with 10,477 polymorphic SNP. In total, 70 significant markers were identified associated to the various assessed traits at FDR ≤ 0.05 contributing a minor to large proportion of the phenotypic variance (8–26.9%), affecting the traits either positively or negatively. GWAS revealed multi-marker-based associations among AE, VAE, PM, OPF and DFO, most likely linked markers, suggesting a potential genomic region controlling the genetic association of these complex traits. Of these markers, Kukri_rep_c103359_233 and wsnp_Ex_rep_c107911_91350930 deserve particular attention. The consistently significant markers with large effect could be useful for marker-assisted selection. Genomic selection revealed medium to high prediction accuracy ranging between 52% and 92% for the assessed traits with the least and maximum value observed for stigma length and visual anther extrusion, respectively. This indicates the feasibility to implement genomic selection to predict the performance of hybrid floral traits with high reliability.


1972 ◽  
Vol 52 (4) ◽  
pp. 569-574 ◽  
Author(s):  
K. C. YEUNG ◽  
E. N. LARTER

A study of the pollen production properties of three hexaploid triticale strains (Triticale hexaploide Lart.) showed that their anther length was significantly greater than that of wheat anthers (Triticum aestivum L. em Thell.) and the estimated number of pollen grains per anther ranged from 15,000 to 21,000. In comparison, a total of 8000 grains per anther was estimated for wheat, cult Manitou. Eighty-nine percent anther extrusion occurred in triticale cult Rosner, while Manitou averaged 70% anther extrusion. The period of anthesis of triticale varied according to strain but generally was of longer duration than in Manitou and thereby promoted outcrossing. Using a triticale strain carrying a dominant marker gene, 50% seed-set was obtained at a distance of 12 m leeward of the pollen source; however, a small percentage was still obtained at a distance of 30 m. It would appear from the limited number of triticales used in this study that a wide range of variability exists within this species in its pollen production and disseminating properties. With appropriate selection pressures, strains with an outbreeding habit could be developed for the purpose of hybrid seed production.


1969 ◽  
Vol 11 (4) ◽  
pp. 810-822 ◽  
Author(s):  
D. R. Knott ◽  
S. S. Sindagi

Diallel crosses were made among six varieties of hard red spring wheat that differed considerably in yield and other characteristics. The F1 hybrids were tested at two seeding rates and the F2, hybrids at one. Heterosis was not great in either generation and no cross appeared to be promising. General combining ability was much more important than specific combining ability and parental yields gave reasonable predictions of hybrid yields. Yields of hybrids at the two seeding rates were closely correlated.


2009 ◽  
Vol 57 (4) ◽  
pp. 417-423 ◽  
Author(s):  
S. Sharma ◽  
H. Chaudhary

The success of winter × spring wheat hybridization programmes depends upon the ability of the genotypes of these two physiologically distinct ecotypes to combine well with each other. Hence the present investigation was undertaken to study the combining ability and nature of gene action for various morpho-physiological and yield-contributing traits in crosses involving winter and spring wheat genotypes. Five elite and diverse genotypes each of winter and spring wheat ecotypes and their F 1 (spring × spring, winter × winter and winter × spring) hybrids, generated in a diallel mating design excluding reciprocals, were evaluated in a random block design with three replications. Considerable variability was observed among the spring and winter wheat genotypes for all the traits under study. Furthermore, these traits were highly influenced by the winter and spring wheat genetic backgrounds, resulting in significant differences between the spring × spring, winter × winter and winter × spring wheat hybrids for some of the traits. The winter × spring wheat hybrids were observed to be the best with respect to yieldcontributing traits. On the basis of GCA effects, the spring wheat parents HPW 42, HPW 89, HW 3024, PW 552 and UP 2418 and the winter wheat parents Saptdhara, VWFW 452, W 10 and WW 24 were found to be good combiners for the majority of traits. These spring and winter wheat parents could be effectively utilized in future hybridization programmes for wheat improvement. Superior hybrid combinations for one or more traits were identified, all of which involved at least one good general combiner for one or more traits in their parentage, and can thus be exploited in successive generations to develop potential recombinants through various breeding strategies. Genetic studies revealed the preponderance of additive gene action for days to flowering, days to maturity and harvest index, and non-additive gene action for the remaining six traits.


Euphytica ◽  
2004 ◽  
Vol 139 (1) ◽  
pp. 45-50 ◽  
Author(s):  
Mohsen Mardi ◽  
Hermann Buerstmayr ◽  
Behzad Ghareyazie ◽  
Marc Lemmens ◽  
Nooshin Moshrefzadeh ◽  
...  

Agronomy ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 407 ◽  
Author(s):  
Quddoos H. Muqaddasi ◽  
Jochen C. Reif ◽  
Marion S. Röder ◽  
Bhoja R. Basnet ◽  
Susanne Dreisigacker

Hybrid breeding facilitates the exploitation of heterosis and it can result in significant genetic gains and increased crop yields. Inefficient cross-pollination is a major limiting factor that hampers hybrid wheat seed production. In this study, we examined the genetic basis of anther extrusion (AE), which is an important trait in increasing cross-pollination, and thus improving seed set on the female lines and hybrid wheat seed production. We studied 300 segregating F2 plants and F2:3 families that result from a cross of two elite spring wheat lines. We observed that F2 and F2:3 populations hold significant and continuous genetic variation for AE, which suggests its reliable phenotypic selection. Composite interval mapping detected three quantitative trait loci (QTL) on chromosomes 3A, 5A, and 5D. The QTL on chromosome 5A (i.e., QAe.cimmyt-5A) was of large-effect, being consistently identified across generations, and spanned over 25 cM. Our study shows that (1) AE possesses strong genetic control (heritability), and (2) the QTL QAe.cimmyt-5A that imparted on an average of 20% of phenotypic variation can be used for marker-assisted selection (MAS) in breeding programs. In addition, pyramiding the large-effect QTL for MAS could efficiently complement the phenotypic selection since it is relatively easy and cheap to visually phenotype AE. This study reports the first large-effect QTL for AE in spring wheat, endorsing the use of this analysis in current hybrid wheat breeding and future Mendelization for the detection of underlying gene(s).


Sign in / Sign up

Export Citation Format

Share Document