Environmental Physiology of Sorghum. I. Environmental and Genetic Control of Epicuticular Wax Load 1

Crop Science ◽  
1983 ◽  
Vol 23 (3) ◽  
pp. 552-558 ◽  
Author(s):  
W. R. Jordan ◽  
R. L. Monk ◽  
F. R. Miller ◽  
D. T. Rosenow ◽  
L. E. Clark ◽  
...  
Crop Science ◽  
1984 ◽  
Vol 24 (6) ◽  
pp. 1168-1173 ◽  
Author(s):  
W. R. Jordan ◽  
P. J. Shouse ◽  
A. Blum ◽  
F. R. Miller ◽  
R. L. Monk

2018 ◽  
Author(s):  
LI Li ◽  
Yicong Du ◽  
Cheng He ◽  
Charles R. Dietrich ◽  
Jiankun Li ◽  
...  

SUMMARYEpicuticular waxes, long-chain hydrocarbon compounds, form the outermost layer of plant surfaces in most terrestrial plants. The presence of epicuticular waxes protects plants from water loss and other environmental stresses. Cloning and characterization of genes involved in the regulation, biosynthesis, and extracellular transport of epicuticular waxes on to the surface of epidermal cells have revealed the molecular basis of epicuticular wax accumulation. However, intracellular trafficking of synthesized waxes to the plasma membrane for cellular secretion is poorly understood. Here, we characterized a maize glossy (gl6) mutant that exhibited decreased epicuticular wax load, increased cuticle permeability, and reduced seedling drought tolerance relative to wild type. We combined an RNA-sequencing based mapping approach (BSR-Seq) and chromosome walking to identify the gl6 candidate gene, which was confirmed via the analysis of multiple independent mutant alleles. The gl6 gene represents a novel maize glossy gene containing a conserved, but uncharacterized domain. Functional characterization suggests that the GL6 protein may be involved in the intracellular trafficking of epicuticular waxes, opening a door to elucidating the poorly understood process by which epicuticular wax is transported from its site of biosynthesis to the plasma membrane.SIGNIFICANCE STATEMENTPlant surface waxes provide an essential protective barrier for terrestrial plants. Understanding the composition and physiological functions of surface waxes, as well as the molecular basis underlying wax accumulation on plant surfaces provides opportunities for the genetic optimization of this protective layer. Genetic studies have identified genes involved in wax biosynthesis, extracellular transport, as well as spatial and temporal regulation of wax accumulation. In this study, a maize mutant, gl6 was characterized that exhibited reduced wax load on plant surfaces, increased water losses, and reduced seedling drought tolerance compared to wild type controls. The gl6 gene is a novel gene harboring a conserved domain with an unknown function. Quantification and microscopic observation of wax accumulation as well as subcellular localization of the GL6 protein provided evidence that gl6 may be involved in the intracellular trafficking of waxes, opening a door for studying this necessary yet poorly understood process for wax loading on plant surfaces.


2021 ◽  
Vol 22 (19) ◽  
pp. 10242
Author(s):  
Paco Romero ◽  
María Teresa Lafuente

The phytohormone abscisic acid (ABA) is a major regulator of fruit response to water stress, and may influence cuticle properties and wax layer composition during fruit ripening. This study investigates the effects of ABA on epicuticular wax metabolism regulation in a citrus fruit cultivar with low ABA levels, called Pinalate (Citrus sinensis L. Osbeck), and how this relationship is influenced by water stress after detachment. Harvested ABA-treated fruit were exposed to water stress by storing them at low (30–35%) relative humidity. The total epicuticular wax load rose after fruit detachment, which ABA application decreased earlier and more markedly during fruit-dehydrating storage. ABA treatment changed the abundance of the separated wax fractions and the contents of most individual components, which reveals dependence on the exposure to postharvest water stress and different trends depending on storage duration. A correlation analysis supported these responses, which mostly fitted the expression patterns of the key genes involved in wax biosynthesis and transport. A cluster analysis indicated that storage duration is an important factor for the exogenous ABA influence and the postharvest environment on epicuticular wax composition, cuticle properties and fruit physiology. Dynamic ABA-mediated reconfiguration of wax metabolism is influenced by fruit exposure to water stress conditions.


Sign in / Sign up

Export Citation Format

Share Document