Infiltration and Permeability in Soil Overlying an Impermeable Layer

1951 ◽  
Vol 15 (C) ◽  
pp. 50-54 ◽  
Author(s):  
D. D. Evans ◽  
Don Kirkham ◽  
R. K. Frevert
Keyword(s):  
2021 ◽  
Vol 13 (15) ◽  
pp. 8201
Author(s):  
Lihua Li ◽  
Han Yan ◽  
Henglin Xiao ◽  
Wentao Li ◽  
Zhangshuai Geng

It is well known that geomembranes frequently and easily fail at the seams, which has been a ubiquitous problem in various applications. To avoid the failure of geomembrane at the seams, photocuring was carried out with 1~5% photoinitiator and 2% carbon black powder. This geomembrane can be sprayed and cured on the soil surface. The obtained geomembrane was then used as a barrier, separator, or reinforcement. In this study, the direct shear tests were carried out with the aim to investigate the interfacial characteristics of photocured geomembrane–clay/sand. The results show that a 2% photoinitiator has a significant effect on the impermeable layer for the photocured geomembrane–clay interface. As for the photocured geomembrane–sand interface, it is reasonable to choose a geomembrane made from a 4% photoinitiator at the boundary of the drainage layer and the impermeable layer in the landfill. In the cover system, it is reasonable to choose a 5% photoinitiator geomembrane. Moreover, as for the interface between the photocurable geomembrane and clay/sand, the friction coefficient increases initially and decreases afterward with the increase of normal stress. Furthermore, the friction angle of the interface between photocurable geomembrane and sand is larger than that of the photocurable geomembrane–clay interface. In other words, the interface between photocurable geomembrane and sand has better shear and tensile crack resistance.


Geophysics ◽  
2009 ◽  
Vol 74 (2) ◽  
pp. B47-B59 ◽  
Author(s):  
Paul C. Veeken ◽  
Peter J. Legeydo ◽  
Yuri A. Davidenko ◽  
Elena O. Kudryavceva ◽  
Sergei A. Ivanov ◽  
...  

Delineation of hydrocarbon prospective areas is an important issue in petroleum exploration. The geoelectric method helps to identify attractive areas and reduces the overall drilling risk. For this purpose, induced polarization (IP) effects are mapped caused by the presence of epigenetic pyrite microcrystals in sedimentary rocks. These crystals occur in a shallow halo-shaped mineralogical alteration zone, often overlying a deeper-seated hydrocarbon accumulation. Local enrichment in pyrite results from reducing geochemical conditions below an impermeable layer. The imperfect top seal of the accumulation permits minor amounts of hydrocarbons to escape and migrate through the overlying rocks to shallower levels. During migration, hydro-carbons encounter an impermeable barrier, forming an altera-tion zone. Induced polarization logging and coring in wells confirm this working model. Geoelectric surveying visual-izes anomalies in electric potential difference measured be-tween receiver electrodes. The differentially normalized method (DNME) inverts the registered decay in potential differences, establishing a depth model constrained by seismic and petro-physical data. Diagnostic geoelectric attributes are proposed, giving a better grip on chargeability and resistivity distribution. Acquisition and processing parameters are adjusted to the target depth. Encouraging results are obtained in deeper [Formula: see text] as well as in very shallow water. Onshore, a grounded current transmitter is used. Geoelectric surveys cover different geologic settings with varying target depths. The success ratio for predicting hydrocarbon occurrences is high. So far, 40 successful wells have been drilled in Russia on mapped geoelectric anomalies. Out of 126 wells, the method produced satisfactory results in all but two cases. The technique reduces the risk attached to new hydrocarbon prospects and allows better ranking at a reasonable cost.


1957 ◽  
Vol S6-VII (7) ◽  
pp. 949-963
Author(s):  
Philibert Russo

Abstract Ground-water aquifers in the southwestern part of the Dombes plateau, France, consist of lenses in Tortonian or Pontian deposits of the Molasse (Tertiary) sequences where they occur between the impermeable crystalline basement and an overlying impermeable layer of Pleistocene glacial clays. The aquifers are dome-shaped masses whose orientation differs, in part, from the general southeast dip of the basement. Ground waters of the Croix-Rousse hill, at Lyons, seem to be of purely local origin.


1987 ◽  
Vol 99 ◽  
Author(s):  
B. A. Gaowacki ◽  
J. E. Evetts

ABSTRACTWe report a systematic investigation of the critical current at 77K for a number of different composite conductors based on the high critical temperature superconductor YBa2 Cu3 O7. Results are reported for an ‘external’ diffusion composite where the oxygen diffuses through an outer cladding of silver, and for an ‘internal’ diffusion design where the composite is clad externally with an oxygen impermeable layer and oxygen diffuses internally from a channel within the conductor. Measurements are reported of the dependence of the critical current on i) the preparation route for the superconducting powder, ii) the preform particle size, iii) the presence of air or vacuum during compaction, iv) the time of the sintering anneal and v) the applied load on the conductor during a critical current test.


1963 ◽  
Vol 3 (9) ◽  
pp. 101 ◽  
Author(s):  
JDF Black

Following the death of peach trees under a straw mulch system of management at Scoresby Horticultural Research Station, the soil moisture relations of mulch, cover crop, and pasture systems of management were studied. Examination of soil moisture levels indicated the presence of an impermeable layer under mulch. This was supported by results of investigations into surface run-off and porosity and by visual examination. It is suggested that trees died from surface waterlogging above the impermeable layer.


1998 ◽  
Vol 26 ◽  
pp. 83-91 ◽  
Author(s):  
W. T. Pfeffer ◽  
N. F. Humphrey

Melt-layer frequency and magnitude in polar and sub-polar ice cores have been interpreted as measures of past summer temperature, and calibrations have been proposed relating frequency of occurrence of ice layers in ice cores to past summer temperatures. But, observations in the percolation facies in Greenland and an analysis of the combined processes of meltwater infiltration and refreezing of water in snow indicate that, in addition to unusually high rates of meltwater input, formation of ice layers will also be facilitated by unusually cold initial conditions or early onset of melt. Uniform warming of both summer and winter conditions has the opposite effect and suppresses ice-layer formation in favor of uniform wetting and refreezing of the snowpack. Numerical modeling of infiltration and refreezing at a stratigraphic fine-to-coarse transition allows quantification of the effects of significant parameters (initial temperature, grain-size and density contrast across the stratigraphic transition, water-input rate and minimum impermeable-layer thickness). Calculations are made to distinguish threshold values of parameters at which infiltration progresses faster than refreezing, resulting in a break-through of water across the stratigraphic transition, from values leading to the formation of an ice layer when refreezing progresses faster than infiltration.


2019 ◽  
Vol 5 (1) ◽  
pp. 121
Author(s):  
I Gde Budi Indrawan ◽  
Shinta Dwi Novianti ◽  
Heru Hendrayana ◽  
Doni Prakasa Eka Putra ◽  
Wahyu Wilopo

Pucang Village was consisted of eruption materials of Merapi Volcano. The relatively high coefficient of permeability of the materials consisting this area caused rainwater to directly infiltrate into the ground. Evaluation of engineering geological conditions was conducted for construction of a detention pond in this area, which had limited water supply for daily activities. The evaluation was conducted on results of a 1:10.000 scale of engineering geological mapping and analyses of 1:10.000 scale of geological disaster maps produced by previous researchers. The engineering geological mapping involved mapping of morphological condition and active geomorphic process, lithological condition, existence of geological structure, and water source location. The evaluation results showed that the proposed location met the land suitability criteria for detention pond construction based on the morphological condition and active geomorphic process, existence of geological structure, and water source location, but did not meet those based on the lithological and vulnerability to Merapi Volcano eruption disaster. Construction of impermeable layer to prevent water seepage into the ground and periodic removal of sediment in the base of the detention pond were suggested to be carried out to keep the detention pond functioning properly.


Sign in / Sign up

Export Citation Format

Share Document