Nonsymbiotic Nitrogen Fixation in an Oak-Hickory Forest Following Long-Term Prescribed Burning

1983 ◽  
Vol 47 (1) ◽  
pp. 134-137 ◽  
Author(s):  
E. D. Vance ◽  
G. S. Henderson ◽  
D. G. Blevins
2022 ◽  
Vol 169 ◽  
pp. 104215
Author(s):  
Thomas H. DeLuca ◽  
Olle Zackrisson ◽  
Marie-Charlotte Nilsson ◽  
Shouqin Sun ◽  
María Arróniz-Crespo

2009 ◽  
Vol 18 (6) ◽  
pp. 727 ◽  
Author(s):  
Davide Ascoli ◽  
Rachele Beghin ◽  
Riccardo Ceccato ◽  
Alessandra Gorlier ◽  
Giampiero Lombardi ◽  
...  

Calluna vulgaris-dominated heathlands are globally important habitats and extremely scarce outside of north-west Europe. Rotational fire, grazing and cutting by local farmers were dominant features of past heathland management throughout Europe but have been abandoned, altering the historical fire regime and habitat structure. We briefly review research on Calluna heathland conservation management and provide the background and methodology for a long-term research project that will be used to define prescribed fire regimes in combination with grazing and cutting, for management of Calluna heathlands in north-west Italy. We outline the ecological and research issues that drive the fire experiment, making explicit the experimental design and the hypotheses that will be tested. We demonstrate how Adaptive Management can be used to inform decisions about the nature of fire prescriptions where little formal knowledge exists. Experimental plots ranging from 600 to 2500 m2 are treated according to one of eight alternative treatments (various combinations of fire, grazing and cutting), each replicated four times. To date, all treatments have been applied for 4 years, from 2005 to 2008, and a continuation is planned. Detailed measurement of fire characteristics is made to help interpret ecological responses at a microplot scale. The results of the experiment will be fed back into the experimental design and used to inform heathland management practice in north-west Italy.


2017 ◽  
Vol 46 (5) ◽  
pp. 1020-1027 ◽  
Author(s):  
T. Adam Coates ◽  
Alex T. Chow ◽  
Donald L. Hagan ◽  
G. Geoff Wang ◽  
William C. Bridges ◽  
...  

2013 ◽  
Vol 13 (8) ◽  
pp. 21703-21763 ◽  
Author(s):  
A. Virkkula ◽  
J. Levula ◽  
T. Pohja ◽  
P. P. Aalto ◽  
P. Keronen ◽  
...  

Abstract. A prescribed burning of a boreal forest was conducted on 26 June 2009 in Hyytiälä, Finland, to study aerosol and trace gas emissions from wildfires and the effects of fire on soil properties in a controlled environment. A 0.8 ha forest near the SMEAR II was cut clear; some tree trunks, all tree tops and branches were left on the ground and burned. The amount of burned organic material was ~46.8 t (i.e., ~60 t ha−1). The flaming phase lasted 2 h 15 min, the smoldering phase 3 h. Measurements were conducted on the ground with both fixed and mobile instrumentation, and from a research aircraft. In the middle of the burning area, CO2 concentration peaks were around 2000–3000 ppm above the baseline and peak vertical flow velocities were 6 ± 3 m s−1, as measured a 10-Hz 3-D sonic anemometer placed within the burn area. Peak particle number concentrations were approximately 1–2 × 106 cm−3 in the plume at a distance of 100–200 m from the burn area. The geometric mean diameter of the mode with the highest concentration was at 80 ± 1 nm during the flaming phase and in the middle of the smoldering phase but at the end of the smoldering phase the largest mode was at 122 nm. In the volume size distributions geometric mean diameter of the largest volume mode was at 153 nm during the flaming phase and at 300 nm during the smoldering phase. The lowest single-scattering albedo of the ground-level measurents was 0.7 in the flaming-phase plume and ~0.9 in the smoldering phase. The radiative forcing efficiency was negative above dark surfaces, in other words, the particles cool the atmosphere. Elevated concentrations of several VOCs (including acetonitrile which is a biomass burning marker) were observed in the smoke plume at ground level. The forest floor (i.e., richly organic layer of soil and debris, characteristic of forested land) measurements showed that VOC fluxes were generally low and consisted mainly of monoterpenes, but a clear peak of VOC flux was observed after the burning. After one year, the fluxes were nearly stabilised close to the level before the burning. The clearcutting and burning of slash increased the total long-term CO2 release from the soil, altered the soil's physical, chemical and biological properties such as increased the available nitrogen contents of the soil, which in turn, affected the level of the long-term fluxes of greenhouse gases.


2010 ◽  
Vol 16 (1) ◽  
pp. 46 ◽  
Author(s):  
T. D. Penman ◽  
S. H. Penman

Prescribed burning is applied worldwide as a forest management tool. It is broadly accepted that altered fire regimes can directly impact upon community structure and composition, but little is known about the indirect effects of altered fire regimes on the mechanisms that produce community-level changes such as changes to the reproductive output of individual plants, hence populations. We examined the reproductive output of four species of Proteaceae within a long term study site where disturbance histories for the last twenty years have been accurately recorded on 216 plots. Frequent fire was found to increase woody fruit production in Banksia marginata, but had no apparent effect on B. serrata, Hakea eriantha or H. sericea. Results of this study vary from a similar study which examined the effect of wildfires. The differences observed are likely to reflect the differing impacts of fire intensity on these species. Indirect changes in fruit production may result in changes in reproductive success of species which in turn may affect vegetation community structure and faunal habitat.


2006 ◽  
Vol 23 (3) ◽  
pp. 197-203 ◽  
Author(s):  
Samuel W. Jackson ◽  
Craig A. Harper ◽  
David S. Buckley ◽  
Bradley F. Miller

Abstract Growing emphasis on sustainability has increased the demand for information on effects of forest management on species diversity. We investigated the hypothesis that plant diversity is a function of microsite heterogeneity by documenting plant diversity and heterogeneity in canopy cover, light, and soil moisture produced by four silvicultural treatments during the first growing season following treatment: prescribed burning, wildlife retention cut with prescribed burning, wildlife retention cut, and shelterwood cutting. Treatments and controls were randomly assigned within four relatively undisturbed, 70–90-year-old oak-hickory stands. Heterogeneity in canopy cover and photosynthetically active radiation was greatest after shelterwood cutting, whereas the wildlife retention cut resulted in less removal of canopy trees and a smaller increase in heterogeneity of these factors. The addition of prescribed burning enhanced the effects of the wildlife retention cut. Prescribed burning alone had the least impact on heterogeneity of these factors. Soil moisture variability appeared to be independent of treatments. Shelterwood cutting increased first-year herbaceous plant diversity, and this increase was likely due, in part, to increased heterogeneity in canopy cover, light, and seedbed condition. These first-year results partially support the hypothesis that plant diversity is a function of microsite diversity in these forests. Long-term monitoring is underway.


Sign in / Sign up

Export Citation Format

Share Document